File size: 13,131 Bytes
b25fb44
 
 
 
 
 
 
 
 
 
 
 
 
a25aa8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b25fb44
 
a25aa8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7babab2
a25aa8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
521fc66
a25aa8f
 
 
 
 
 
 
 
 
 
 
 
b25fb44
a25aa8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
# =========== Copyright 2023 @ CAMEL-AI.org. All Rights Reserved. ===========
# Licensed under the Apache License, Version 2.0 (the “License”);
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an “AS IS” BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =========== Copyright 2023 @ CAMEL-AI.org. All Rights Reserved. ===========
"""
Gradio-based web UI to explore the Camel dataset.
"""

import argparse
import random
from typing import Dict, List, Optional, Tuple

import gradio as gr

from apps.data_explorer.loader import Datasets, load_datasets


def parse_arguments():
    """ Get command line arguments. """

    parser = argparse.ArgumentParser("Camel data explorer")
    parser.add_argument(
        '--data-path', type=str, default=None,
        help='Path to the folder with ZIP datasets containing JSONs')
    parser.add_argument('--default-dataset', type=str, default=None,
                        help='Default dataset name selected from ZIPs')
    parser.add_argument('--share', type=bool, default=False,
                        help='Expose the web UI to Gradio')
    parser.add_argument(
        '--server-name', type=str, default="0.0.0.0",
        help='localhost for local, 0.0.0.0 (default) for public')
    parser.add_argument('--server-port', type=int, default=8080,
                        help='Port ot run the web page on')
    parser.add_argument('--inbrowser', type=bool, default=False,
                        help='Open the web UI in the default browser on lunch')
    parser.add_argument(
        '--concurrency-count', type=int, default=10,
        help='Number if concurrent threads at Gradio websocket queue. ' +
        'Increase to serve more requests but keep an eye on RAM usage.')
    args, unknown = parser.parse_known_args()
    if len(unknown) > 0:
        print("Unknown args: ", unknown)
    return args


def construct_ui(blocks, datasets: Datasets,
                 default_dataset: Optional[str] = None):
    """ Build Gradio UI and populate with chat data from JSONs.

    Args:
        blocks: Gradio blocks
        datasets (Datasets): Several parsed
        multi-JSON dataset with chats.
        default_dataset (str): Default selection of the dataset.

    Returns:
        None
    """

    if default_dataset is None:
        default_dataset = "ai_society_chat"

    misalignment_set_names = {"misalignment"}
    ordinary_datasets = [
        v for v in datasets.keys() if v not in misalignment_set_names
    ]
    misalignment_datasets = [
        v for v in datasets.keys() if v in misalignment_set_names
    ]
    default_dataset_name = default_dataset \
        if default_dataset in datasets.keys() \
        else ordinary_datasets[0] if len(ordinary_datasets) > 0 \
        else misalignment_datasets[0] if len(misalignment_datasets) > 0 \
        else ""
    dataset_names = list(datasets.keys())

    with gr.Row():
        with gr.Column(scale=2):
            with gr.Row():
                dataset_dd = gr.Dropdown(dataset_names, label="Select dataset",
                                         value="NODEFAULT", interactive=True)
            with gr.Row():
                disclaimer_ta = gr.Markdown(
                    "## By clicking AGREE I consent to use the dataset "
                    "for purely educational and academic purposes and "
                    "not use it for any fraudulent activity; and I take "
                    "all the responsibility if the data is used in a "
                    "malicious application.", visible=False)
            with gr.Row():
                with gr.Column(scale=1):
                    accept_disclaimer_bn = gr.Button("AGREE", visible=False)
                with gr.Column(scale=1):
                    decline_disclaimer_bn = gr.Button("DECLINE", visible=False)
            with gr.Row():
                with gr.Column(scale=3):
                    assistant_dd = gr.Dropdown([], label="ASSISTANT", value="",
                                               interactive=True)
                with gr.Column(scale=3):
                    user_dd = gr.Dropdown([], label="USER", value="",
                                          interactive=True)
        with gr.Column(scale=1):
            gr.Markdown(
                "## CAMEL: Communicative Agents for \"Mind\" Exploration"
                " of Large Scale Language Model Society\n"
                "Github repo: [https://github.com/lightaime/camel]"
                "(https://github.com/lightaime/camel)\n"
                '<div style="display:flex; justify-content:center;">'
                '<img src="https://raw.githubusercontent.com/lightaime/camel/'
                'master/misc/logo.png" alt="Logo" style="max-width:50%;">'
                '</div>')

    task_dd = gr.Dropdown([], label="Original task", value="",
                          interactive=True)
    specified_task_ta = gr.TextArea(label="Specified task", lines=2)
    chatbot = gr.Chatbot()
    accepted_st = gr.State(False)

    def set_default_dataset() -> Dict:
        """ Trigger for app load.

        Returns:
            Dict: Update dict for dataset_dd.
        """
        return gr.update(value=default_dataset_name)

    def check_if_misalignment(dataset_name: str, accepted: bool) \
            -> Tuple[Dict, Dict, Dict]:
        """ Display AGREE/DECLINE if needed.

        Returns:
            Tuple: Visibility updates for the buttons.
        """

        if dataset_name == "misalignment" and not accepted:
            return gr.update(visible=True), \
                gr.update(visible=True), gr.update(visible=True)
        else:
            return gr.update(visible=False), \
                gr.update(visible=False), gr.update(visible=False)

    def enable_misalignment() -> Tuple[bool, Dict, Dict, Dict]:
        """ Update the state of the accepted disclaimer.

        Returns:
            Tuple: New state and visibility updates for the buttons.
        """

        return True, gr.update(visible=False), \
            gr.update(visible=False), gr.update(visible=False)

    def disable_misalignment() -> Tuple[bool, Dict, Dict, Dict]:
        """ Update the state of the accepted disclaimer.

        Returns:
            Tuple: New state and visibility updates for the buttons.
        """

        return False, gr.update(visible=False), \
            gr.update(visible=False), gr.update(visible=False)

    def update_dataset_selection(dataset_name: str,
                                 accepted: bool) -> Tuple[Dict, Dict]:
        """ Update roles based on the selected dataset.

        Args:
            dataset_name (str): Name of the loaded .zip dataset.
            accepted (bool): If the disclaimer thas been accepted.

        Returns:
            Tuple[Dict, Dict]: New Assistant and User roles.
        """

        if dataset_name == "misalignment" and not accepted:
            # If used did not accept the misalignment policy,
            # keep the old selection.
            return (gr.update(value="N/A",
                              choices=[]), gr.update(value="N/A", choices=[]))

        dataset = datasets[dataset_name]
        assistant_roles = dataset['assistant_roles']
        user_roles = dataset['user_roles']
        assistant_role = random.choice(assistant_roles) \
            if len(assistant_roles) > 0 else ""
        user_role = random.choice(user_roles) if len(user_roles) > 0 else ""
        return (gr.update(value=assistant_role, choices=assistant_roles),
                gr.update(value=user_role, choices=user_roles))

    def roles_dd_change(dataset_name: str, assistant_role: str,
                        user_role: str) -> Dict:
        """ Update the displayed chat upon inputs change.

        Args:
            assistant_role (str): Assistant dropdown value.
            user_role (str): User dropdown value.

        Returns:
            Dict: New original roles state dictionary.
        """
        matrix = datasets[dataset_name]['matrix']
        if (assistant_role, user_role) in matrix:
            record: Dict[str, Dict] = matrix[(assistant_role, user_role)]
            original_task_options = list(record.keys())
            original_task = original_task_options[0]
        else:
            original_task = "N/A"
            original_task_options = []

        choices = gr.Dropdown(choices=original_task_options,
                                     value=original_task, interactive=True)
        return choices

    def build_chat_history(messages: Dict[int, Dict]) -> List[Tuple]:
        """ Structures chatbot contents from the loaded data.

        Args:
            messages (Dict[int, Dict]): Messages loaded from JSON.

        Returns:
            List[Tuple]: Chat history in chatbot UI element format.
        """
        history: List[Tuple] = []
        curr_qa = (None, None)
        for k in sorted(messages.keys()):
            msg = messages[k]
            content = msg['content']
            if msg['role_type'] == "USER":
                if curr_qa[0] is not None:
                    history.append(curr_qa)
                    curr_qa = (content, None)
                else:
                    curr_qa = (content, None)
            elif msg['role_type'] == "ASSISTANT":
                curr_qa = (curr_qa[0], content)
                history.append(curr_qa)
                curr_qa = (None, None)
            else:
                pass
        return history

    def task_dd_change(dataset_name: str, assistant_role: str, user_role: str,
                       original_task: str) -> Tuple[str, List]:
        """ Load task details and chatbot history into UI elements.

        Args:
            assistant_role (str): An assistan role.
            user_role (str): An user role.
            original_task (str): The original task.

        Returns:
            Tuple[str, List]: New contents of the specified task
            and chatbot history UI elements.
        """

        matrix = datasets[dataset_name]['matrix']
        if (assistant_role, user_role) in matrix:
            task_dict: Dict[str, Dict] = matrix[(assistant_role, user_role)]
            if original_task in task_dict:
                chat = task_dict[original_task]
                specified_task = chat['specified_task']
                history = build_chat_history(chat['messages'])
            else:
                specified_task = "N/A"
                history = []
        else:
            specified_task = "N/A"
            history = []
        return specified_task, history

    dataset_dd.change(check_if_misalignment, [dataset_dd, accepted_st],
                      [disclaimer_ta, accept_disclaimer_bn,
                       decline_disclaimer_bn]) \
              .then(update_dataset_selection,
                    [dataset_dd, accepted_st],
                    [assistant_dd, user_dd])

    accept_disclaimer_bn.click(enable_misalignment, None, [
        accepted_st, disclaimer_ta, accept_disclaimer_bn, decline_disclaimer_bn
    ]) \
        .then(update_dataset_selection,
              [dataset_dd, accepted_st],
              [assistant_dd, user_dd])

    decline_disclaimer_bn.click(disable_misalignment, None, [
        accepted_st, disclaimer_ta, accept_disclaimer_bn, decline_disclaimer_bn
    ]) \
        .then(update_dataset_selection,
              [dataset_dd, accepted_st],
              [assistant_dd, user_dd])

    func_args = (roles_dd_change, [dataset_dd, assistant_dd, user_dd], task_dd)
    assistant_dd.change(*func_args)
    user_dd.change(*func_args)

    task_dd.change(task_dd_change,
                   [dataset_dd, assistant_dd, user_dd, task_dd],
                   [specified_task_ta, chatbot])

    blocks.load(set_default_dataset, None, dataset_dd)


def construct_blocks(data_path: str, default_dataset: Optional[str]):
    """ Construct Blocs app but do not launch it.

    Args:
        data_path (str): Path to the set of ZIP datasets.
        default_dataset (Optional[str]): Name of the default dataset,
            without extension.

    Returns:
        gr.Blocks: Blocks instance.
    """

    print("Loading the dataset...")
    datasets = load_datasets(data_path)
    print("Dataset is loaded")

    print("Getting Data Explorer web server online...")

    with gr.Blocks() as blocks:
        construct_ui(blocks, datasets, default_dataset)

    return blocks


def main():
    """ Entry point. """

    args = parse_arguments()

    blocks = construct_blocks(args.data_path, args.default_dataset)

    blocks.queue(args.concurrency_count) \
          .launch(share=args.share, inbrowser=args.inbrowser,
                  server_name=args.server_name, server_port=args.server_port)

    print("Exiting.")


if __name__ == "__main__":
    main()