camillebrl commited on
Commit
92fa037
·
verified ·
1 Parent(s): b134905

Update tasks/text.py

Browse files
Files changed (1) hide show
  1. tasks/text.py +7 -21
tasks/text.py CHANGED
@@ -97,23 +97,8 @@ async def evaluate_text(request: TextEvaluationRequest):
97
  # Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
98
  #--------------------------------------------------------------------------------------------
99
 
100
- # Make random predictions (placeholder for actual model inference)
101
  true_labels = test_dataset["label"]
102
- config = AutoConfig.from_pretrained("camillebrl/ModernBERT-envclaims-overfit")
103
- label2id = config.label2id
104
- # classifier = pipeline(
105
- # "text-classification",
106
- # "camillebrl/ModernBERT-envclaims-overfit",
107
- # device="cpu"
108
- # )
109
- # print("len dataset : ", len(test_dataset["quote"]))
110
- # predictions = []
111
- # for batch in range(0, len(test_dataset["quote"]), 32): # Ajustez la taille des batchs
112
- # batch_quotes = test_dataset["quote"][batch:batch + 32]
113
- # batch_predictions = classifier(batch_quotes)
114
- # predictions.extend([label2id[pred["label"]] for pred in batch_predictions])
115
- # print(predictions)
116
- # print("final predictions : ", predictions)
117
  # Initialize the model once
118
  classifier = TextClassifier()
119
 
@@ -126,6 +111,9 @@ async def evaluate_text(request: TextEvaluationRequest):
126
  for i in range(num_batches)
127
  ]
128
 
 
 
 
129
  # Process batches in parallel
130
  max_workers = min(os.cpu_count(), 4) # Limit to 4 workers or CPU count
131
  print(f"Processing with {max_workers} workers")
@@ -152,14 +140,12 @@ async def evaluate_text(request: TextEvaluationRequest):
152
  batch_results[batch_idx] = []
153
 
154
  # Flatten predictions while maintaining order
155
- all_predictions = [pred for batch_preds in batch_results for pred in batch_preds]
156
- print(f"Total predictions collected: {len(all_predictions)}")
157
-
158
 
159
  #--------------------------------------------------------------------------------------------
160
  # YOUR MODEL INFERENCE STOPS HERE
161
  #--------------------------------------------------------------------------------------------
162
-
163
 
164
  # Stop tracking emissions
165
  emissions_data = tracker.stop_task()
@@ -188,4 +174,4 @@ async def evaluate_text(request: TextEvaluationRequest):
188
 
189
  print("results : ", results)
190
 
191
- return results
 
97
  # Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
98
  #--------------------------------------------------------------------------------------------
99
 
 
100
  true_labels = test_dataset["label"]
101
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
102
  # Initialize the model once
103
  classifier = TextClassifier()
104
 
 
111
  for i in range(num_batches)
112
  ]
113
 
114
+ # Initialize batch_results before parallel processing
115
+ batch_results = [[] for _ in range(num_batches)]
116
+
117
  # Process batches in parallel
118
  max_workers = min(os.cpu_count(), 4) # Limit to 4 workers or CPU count
119
  print(f"Processing with {max_workers} workers")
 
140
  batch_results[batch_idx] = []
141
 
142
  # Flatten predictions while maintaining order
143
+ predictions = [pred for batch_preds in batch_results for pred in batch_preds]
144
+ print(f"Total predictions collected: {len(predictions)}")
 
145
 
146
  #--------------------------------------------------------------------------------------------
147
  # YOUR MODEL INFERENCE STOPS HERE
148
  #--------------------------------------------------------------------------------------------
 
149
 
150
  # Stop tracking emissions
151
  emissions_data = tracker.stop_task()
 
174
 
175
  print("results : ", results)
176
 
177
+ return results