File size: 8,446 Bytes
26776bf 3cf9bb8 26776bf 715c2a4 70ee030 b174961 f709b40 d7debf4 f709b40 ced5ed3 f709b40 3cf9bb8 82e1a57 f709b40 2248513 323cba4 b1cac89 21ce94e f709b40 db162d3 30480ad db162d3 a699d4a f74d64c 27c3a91 1b67d04 27c3a91 1b67d04 27c3a91 861654a f709b40 3cf9bb8 27c3a91 f74d64c f709b40 c80f584 f709b40 a699d4a f709b40 c80f584 f709b40 82e1a57 0dc2f2a 6c97556 f3ec65b 8f5e87a 0b87614 6c97556 f709b40 0dc2f2a 9ec4ca9 ced5ed3 9ec4ca9 ced5ed3 b174961 f709b40 816b85e 323cba4 072cbdb 82e1a57 072cbdb 87394d1 86afb6f f709b40 9ec4ca9 48c5ac5 f709b40 c80f584 f709b40 3fce95f 0dc2f2a f709b40 ea4e3ad b174961 ea4e3ad f3ec65b ea4e3ad b174961 ea4e3ad e108435 7839a66 b174961 a50de36 46ed965 db5a244 45b92d7 a50de36 eec23c4 db5a244 21ce94e a50de36 db5a244 eec23c4 a50de36 b174961 cdada6e 46ed965 a99d2ea 46ed965 a99d2ea a50de36 b174961 cdada6e b174961 cdada6e b174961 0c0882f b174961 51ebcc7 b174961 51ebcc7 b174961 51ebcc7 b174961 cdada6e 51ebcc7 b174961 a50de36 db162d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
# ===========================================
# ver01.01-5.workload-----app.py
# ===========================================
def print_scripts(file_path):
try:
with open(file_path, 'r') as file:
print(f"\n--- Contents of {file_path} ---\n")
print(file.read())
print(f"--- End of {file_path} ---\n")
except Exception as e:
print(f"Could not read {file_path}: {e}")
if __name__ == "__main__":
file_1 = "/home/user/.local/lib/python3.10/site-packages/chainlit/socket.py"
file_2 = "/home/user/.local/lib/python3.10/site-packages/socketio/async_server.py"
print_scripts(file_1)
print_scripts(file_2)
import asyncio
import concurrent.futures
import os
import re
import time
import json
import chainlit as cl
from dotenv import load_dotenv
from langchain import hub
from langchain_openai import OpenAI
from tiktoken import encoding_for_model
from langchain.chains import LLMChain, APIChain
from langchain_core.prompts import PromptTemplate
from langchain.memory.buffer import ConversationBufferMemory
from langchain.memory import ConversationTokenBufferMemory
from langchain.memory import ConversationSummaryMemory
#from api_docs_mck import api_docs_str
from api_docs import api_docs_str, auth_token
load_dotenv()
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")
auth = os.environ.get("CHAINLIT_AUTH_SECRET")
daysoff_assistant_template = """
#You are a customer support assistant (’kundeservice AI assistent’) for Daysoff.
#By default, you respond in Norwegian language, using a warm, direct, and professional tone.
Your expertise is exclusively in retrieving booking information for a given booking ID assistance related to
to this.
You do not provide information outside of this scope. If a question is not about this topic, respond with
"Jeg driver faktisk kun med henvendelser omkring bestillingsinformasjon. Gjelder det andre henvendelser
må du nok kontakte kundeservice på [email protected]😊"
Chat History: {chat_history}
Question: {question}
Answer:
"""
daysoff_assistant_prompt = PromptTemplate(
input_variables=['chat_history', 'question'],
template=daysoff_assistant_template
)
api_url_template = """
Given the following API Documentation for Daysoff's official
booking information API: {api_docs}
Your task is to construct the most efficient API URL to answer
the user's question, ensuring the
call is optimized to include only the necessary information.
Question: {question}
API URL:
"""
api_url_prompt = PromptTemplate(input_variables=['api_docs', 'question'],
template=api_url_template)
api_response_template = """
With the API Documentation for Daysoff's official API: {api_docs} in mind,
and the specific user question: {question},
and given this API URL: {api_url} for querying,
and response from Daysoff's API: {api_response},
never refer the user to the API URL as your answer!
You should always provide a clear and concise summary (in Norwegian) of the booking information retrieved.
This way you directly address the user's question in a manner that reflects the professionalism and warmth
of a human customer service agent.
Summary:
"""
api_response_prompt = PromptTemplate(
input_variables=['api_docs', 'question', 'api_url', 'api_response'],
template=api_response_template
)
#async def on_chat_start():
#app_user = cl.user_session.get("user")
#user_env = cl.user_session.get("env")
#await cl.Message(f"Hello {app_user.identifier}").send()
#@cl.on_chat_start
#async def on_chat_start():
#app_user = cl.user_session.get("user")
#await cl.Message(f"Hello {app_user}").send()
@cl.on_chat_start
def setup_multiple_chains():
llm = OpenAI(
model='gpt-3.5-turbo-instruct',
temperature=0.7,
openai_api_key=OPENAI_API_KEY,
max_tokens=2048,
top_p=0.9,
frequency_penalty=0.1,
presence_penalty=0.1
)
conversation_memory = ConversationBufferMemory(memory_key="chat_history",
max_len=30,
return_messages=True,
)
llm_chain = LLMChain(
llm=llm,
prompt=daysoff_assistant_prompt,
memory=conversation_memory,
)
cl.user_session.set("llm_chain", llm_chain)
api_chain = APIChain.from_llm_and_api_docs(
llm=llm,
api_docs=api_docs_str,
api_url_prompt=api_url_prompt,
api_response_prompt=api_response_prompt,
verbose=True,
limit_to_domains=None #["http://0.0.0.0:7860/"]
)
cl.user_session.set("api_chain", api_chain)
"""
@cl.on_message
async def handle_message(message: cl.Message):
user_message = message.content #.lower()
llm_chain = cl.user_session.get("llm_chain")
api_chain = cl.user_session.get("api_chain")
booking_pattern = r'\b[A-Z]{6}\d{6}\b'
endpoint_url = "https://aivisions.no/data/daysoff/api/v1/booking/"
auth_token = f"Bearer {auth_token}
# --GET method
if re.search(booking_pattern, user_message):
bestillingskode = re.search(booking_pattern, user_message).group(0)
question = f"Retrieve information for booking ID {endpoint_url}?search={bestillingskode}&auth_token={auth_token}"
"
response = await api_chain.acall(
{
"bestillingskode": bestillingskode,
"question": question,
"auth_token": auth_token
},
callbacks=[cl.AsyncLangchainCallbackHandler()])
"""
"""
# --POST method, booking_id@body
if re.search(booking_pattern, user_message):
bestillingskode = re.search(booking_pattern, user_message).group(0)
question = f"Retrieve information for booking ID {bestillingskode}"
response = await api_chain.acall(
{
"url": endpoint_url,
"method": "POST",
"headers": {
"Authorization": f"Bearer {auth_token}",
"Content-Type": "application/json"
},
"body": {
"booking_id": bestillingskode
},
"question": question
},
callbacks=[cl.AsyncLangchainCallbackHandler()]
)
else:
response = await llm_chain.acall(user_message, callbacks=[cl.AsyncLangchainCallbackHandler()])
response_key = "output" if "output" in response else "text"
await cl.Message(response.get(response_key, "")).send()
return message.content
#endpoint_url = "https://670dccd0073307b4ee447f2f.mockapi.io/daysoff/api/V1/booking"
"""
@cl.on_message
async def handle_message(message: cl.Message):
user_message = message.content
llm_chain = cl.user_session.get("llm_chain")
api_chain = cl.user_session.get("api_chain")
booking_pattern = r'\b[A-Z]{6}\d{6}\b'
endpoint_url = "https://aivisions.no/data/daysoff/api/v1/booking/"
#auth_token = f"Bearer {auth_token}
if re.search(booking_pattern, user_message):
bestillingskode = re.search(booking_pattern, user_message).group(0)
question = f"Retrieve information for booking ID {bestillingskode}"
response = await api_chain.acall( # ~ainvoke
{
"url": endpoint_url,
"method": "POST",
"headers": {
"Authorization": f"Bearer {auth_token}",
"Content-Type": "application/json",
},
"body": {
"booking_id": bestillingskode,
},
"question": question,
},
callbacks=[cl.AsyncLangchainCallbackHandler()],
)
else:
response = await llm_chain.acall(user_message, callbacks=[cl.AsyncLangchainCallbackHandler()])
response_key = "output" if "output" in response else "text"
await cl.Message(response.get(response_key, "")).send()
return message.content
# --concurrent execution@ThreadPoolExecutor, resolve the ’Could not reach the server' error?
#loop = asyncio.get_running_loop()
#with concurrent.futures.ThreadPoolExecutor() as pool:
#await loop.run_in_executor(pool, lambda: asyncio.run(process_message()))
|