File size: 5,123 Bytes
26776bf 954c17e 26776bf 70ee030 b174961 f709b40 d7debf4 f709b40 ced5ed3 f709b40 3cf9bb8 82e1a57 f709b40 2248513 323cba4 45e1c9f f709b40 db162d3 30480ad 45e1c9f a699d4a f74d64c 27c3a91 1b67d04 27c3a91 1b67d04 27c3a91 861654a f709b40 3cf9bb8 27c3a91 f74d64c f709b40 c80f584 f709b40 a699d4a f709b40 c80f584 f709b40 82e1a57 0dc2f2a 6c97556 f3ec65b 8f5e87a 0b87614 6c97556 f709b40 0dc2f2a f709b40 816b85e 323cba4 072cbdb 82e1a57 072cbdb 87394d1 86afb6f f709b40 48c5ac5 f709b40 c80f584 f709b40 9f7e2f2 0dc2f2a f709b40 ea4e3ad b174961 cdada6e b174961 06c9b55 bb451be 51ebcc7 4c5b723 06c9b55 327eb05 06c9b55 327eb05 06c9b55 079783c 954c17e fece0d8 584f31b 079783c 584f31b 4c5b723 584f31b 954c17e 079783c 51ebcc7 b174961 51ebcc7 bb451be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
# ===========================================
# "the-very-latest"-----app.py ✍🏽 🎬
# ===========================================
import asyncio
import concurrent.futures
import os
import re
import time
import json
import chainlit as cl
from dotenv import load_dotenv
from langchain import hub
from langchain_openai import OpenAI
from tiktoken import encoding_for_model
from langchain.chains import LLMChain, APIChain
from langchain_core.prompts import PromptTemplate
from langchain.memory.buffer import ConversationBufferMemory
from langchain.memory import ConversationTokenBufferMemory
from langchain.memory import ConversationSummaryMemory
from api_docs import api_docs_str
load_dotenv()
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")
auth_token = os.getenv("DAYSOFF_API_TOKEN")
daysoff_assistant_template = """
#You are a customer support assistant (’kundeservice AI assistent’) for Daysoff.
#By default, you respond in Norwegian language, using a warm, direct, and professional tone.
Your expertise is exclusively in retrieving booking information for a given booking ID assistance related to
to this.
You do not provide information outside of this scope. If a question is not about this topic, respond with
"Jeg driver faktisk kun med henvendelser omkring bestillingsinformasjon. Gjelder det andre henvendelser
må du nok kontakte kundeservice på [email protected]😊"
Chat History: {chat_history}
Question: {question}
Answer:
"""
daysoff_assistant_prompt = PromptTemplate(
input_variables=['chat_history', 'question'],
template=daysoff_assistant_template
)
api_url_template = """
Given the following API Documentation for Daysoff's official
booking information API: {api_docs}
Your task is to construct the most efficient API URL to answer
the user's question, ensuring the
call is optimized to include only the necessary information.
Question: {question}
API URL:
"""
api_url_prompt = PromptTemplate(input_variables=['api_docs', 'question'],
template=api_url_template)
api_response_template = """
With the API Documentation for Daysoff's official API: {api_docs} in mind,
and the specific user question: {question},
and given this API URL: {api_url} for querying,
and response from Daysoff's API: {api_response},
never refer the user to the API URL as your answer!
You should always provide a clear and concise summary (in Norwegian) of the booking information retrieved.
This way you directly address the user's question in a manner that reflects the professionalism and warmth
of a human customer service agent.
Summary:
"""
api_response_prompt = PromptTemplate(
input_variables=['api_docs', 'question', 'api_url', 'api_response'],
template=api_response_template
)
@cl.on_chat_start
def setup_multiple_chains():
llm = OpenAI(
model='gpt-3.5-turbo-instruct',
temperature=0.7,
openai_api_key=OPENAI_API_KEY,
max_tokens=2048,
top_p=0.9,
frequency_penalty=0.1,
presence_penalty=0.1
)
conversation_memory = ConversationBufferMemory(memory_key="chat_history",
max_len=30,
return_messages=True,
)
llm_chain = LLMChain(
llm=llm,
prompt=daysoff_assistant_prompt,
memory=conversation_memory,
)
cl.user_session.set("llm_chain", llm_chain)
api_chain = APIChain.from_llm_and_api_docs(
llm=llm,
api_docs=api_docs_str,
api_url_prompt=api_url_prompt,
api_response_prompt=api_response_prompt,
verbose=True,
limit_to_domains=None
)
cl.user_session.set("api_chain", api_chain)
@cl.on_message
async def handle_message(message: cl.Message):
user_message = message.content
llm_chain = cl.user_session.get("llm_chain")
api_chain = cl.user_session.get("api_chain")
booking_pattern = r'\b[A-Z]{6}\d{6}\b'
#endpoint_url = "https://aivisions.no/data/daysoff/api/v1/booking/"
if re.search(booking_pattern, user_message):
bestillingskode = re.search(booking_pattern, user_message).group(0)
headers = {
"Authorization": auth_token,
#"Content-Type": "application/json"
}
question = f"Retrieve booking information associated with a booking ID"
# --------------------------------AD VAL.III--------------------------------
response = await api_chain.acall(
{
"headers": headers,
"body": {
"booking_id": bestillingskode,
},
"question": question,
},
callbacks=[cl.AsyncLangchainCallbackHandler()]
)
# --------------------------------------------------------------------------
else:
response = await llm_chain.acall(user_message, callbacks=[cl.AsyncLangchainCallbackHandler()])
response_key = "output" if "output" in response else "text"
await cl.Message(response.get(response_key, "")).send()
return message.content
|