File size: 5,798 Bytes
8b77feb 26776bf ec9c412 70ee030 f709b40 d7debf4 f709b40 ced5ed3 f709b40 ec9c412 0c02838 8b77feb f709b40 3cf9bb8 82e1a57 ec9c412 f709b40 2248513 3353cdd 323cba4 45e1c9f 3353cdd db162d3 30480ad 42fbae5 03fc0e1 42fbae5 86445de f74d64c fef7cfb 27c3a91 1b67d04 fef7cfb 27c3a91 861654a f709b40 3cf9bb8 27c3a91 f74d64c f709b40 c80f584 f709b40 a699d4a f709b40 c80f584 f709b40 fef7cfb 0dc2f2a 6c97556 f3ec65b 8f5e87a 0b87614 fef7cfb 0b87614 6c97556 f709b40 0dc2f2a f709b40 816b85e 323cba4 fef7cfb 072cbdb 87394d1 86afb6f 177c731 86afb6f f709b40 ec9c412 3587df4 ec9c412 42fbae5 8c244cb cfb5afd 42fbae5 fef7cfb ef5280a ec9c412 fef7cfb ec9c412 0dc2f2a ec9c412 9a81190 ec9c412 ea4e3ad b174961 fef7cfb ec9c412 fef7cfb b174961 ef5280a 42fbae5 8a1955c 177c731 6693bcd 8cb9420 aa43dfd 8cb9420 e6c7289 2a82005 093909b ef5280a 5337fdc 8cb9420 2a82005 ec9c412 8a1955c c3e7c77 6693bcd e6c7289 8a1955c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
# ---------------------------------------------------for backend looks-------------------------------------------------
#with open('/usr/local/lib/python3.10/site-packages/transformers/utils/chat_template_utils.py', 'r') as file:
#content = file.read()
#print("base.py:", content)
# ------------------------------------------------------the end--------------------------------------------------------
# ===========================================
# aha-----app.py
# ===========================================
import asyncio
import os
import re
import time
import json
import chainlit as cl
from dotenv import load_dotenv
from langchain_community.tools.requests.tool import RequestsPostTool
from langchain_community.utilities.requests import TextRequestsWrapper
from langchain_community.utilities.requests import JsonRequestsWrapper
from langchain import hub
from langchain_openai import OpenAI
from tiktoken import encoding_for_model
from langchain.chains import LLMChain, APIChain
from langchain_core.prompts import PromptTemplate
from langchain.memory.buffer import ConversationBufferMemory
#from langchain.memory import ConversationTokenBufferMemory
#from langchain.memory import ConversationSummaryMemory
from api_docs import api_docs_str
load_dotenv()
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")
auth_token = os.environ.get("CHAINLIT_AUTH_SECRET")
if not auth_token.startswith("Bearer "):
auth_token = f"Bearer {auth_token}"
daysoff_assistant_template = """
#You are a customer support assistant (’kundeservice AI assistent’) for Daysoff.
#By default, you respond in Norwegian language, using a warm, direct, and professional tone.
Your expertise is exclusively in retrieving booking information for a given booking ID assistance related to
to this.
You do not provide information outside of this scope. If a question is not about this topic, respond with
"Jeg driver faktisk kun med henvendelser omkring bestillingsinformasjon. Gjelder det andre henvendelser
må du nok kontakte kundeservice på [email protected]😊"
Chat History: {chat_history}
Question: {question}
Answer:
"""
daysoff_assistant_prompt = PromptTemplate(
input_variables=['chat_history', 'question'],
template=daysoff_assistant_template
)
api_url_template = """
Given the following API Documentation for Daysoff's official
booking information API: {api_docs}
Your task is to construct the most efficient API URL to answer
the user's question, ensuring the
call is optimized to include only the necessary information.
Question: {question}
API URL:
"""
api_url_prompt = PromptTemplate(input_variables=['api_docs', 'question'],
template=api_url_template)
api_response_template = """
With the API Documentation for Daysoff's official API: {api_docs} in mind,
and the specific user question: {question},
and given this API URL: {api_url} for querying,
and response from Daysoff's API: {api_response},
never refer the user to the API URL as your answer!
You should always provide a clear and concise summary (in Norwegian) of the booking information retrieved.
This way you directly address the user's question in a manner that reflects the professionalism and warmth
of a human customer service agent.
Summary:
"""
api_response_prompt = PromptTemplate(
input_variables=['api_docs', 'question', 'api_url', 'api_response'],
template=api_response_template
)
@cl.on_chat_start
def setup_multiple_chains():
llm = OpenAI(
model='gpt-3.5-turbo-instruct',
temperature=0.7,
openai_api_key=OPENAI_API_KEY,
max_tokens=2048,
top_p=0.9,
frequency_penalty=0.1,
presence_penalty=0.1
)
conversation_memory = ConversationBufferMemory(memory_key="chat_history",
max_len=30,
return_messages=True,
)
llm_chain = LLMChain(
llm=llm,
prompt=daysoff_assistant_prompt,
memory=conversation_memory
)
cl.user_session.set("llm_chain", llm_chain)
api_chain = APIChain.from_llm_and_api_docs(
llm=llm,
api_docs=api_docs_str,
api_url_prompt=api_url_prompt,
api_response_prompt=api_response_prompt,
verbose=True,
limit_to_domains=None
)
cl.user_session.set("api_chain", api_chain)
requests_wrapper = TextRequestsWrapper(
headers={
"Authorization": auth_token,
"Content-Type": "application/json"
}
)
post_tool = RequestsPostTool(
requests_wrapper=requests_wrapper,
allow_dangerous_requests=True
)
cl.user_session.set("post_tool", post_tool)
@cl.on_message
async def handle_message(message: cl.Message):
user_message = message.content
llm_chain = cl.user_session.get("llm_chain")
api_chain = cl.user_session.get("api_chain")
post_tool = cl.user_session.get("post_tool")
api_url = "https://aivisions.no/data/daysoff/api/v1/booking/"
booking_pattern = r'\b[A-Z]{6}\d{6}\b'
match = re.search(booking_pattern, user_message)
if match:
bestillingskode = match.group()
post_data = {
"url": api_url,
"body": {
"booking_id": bestillingskode
}
}
response = await post_tool.ainvoke(
json.dumps(post_data),
config={"callbacks": [cl.AsyncLangchainCallbackHandler()]}
)
else:
response = await llm_chain.ainvoke(user_message, callbacks=[cl.AsyncLangchainCallbackHandler()])
response_key = "output" if "output" in response else "text"
await cl.Message(response.get(response_key, "")).send()
return message.content
|