File size: 5,798 Bytes
8b77feb
 
 
 
 
 
 
 
26776bf
ec9c412
 
 
 
70ee030
f709b40
d7debf4
f709b40
 
 
 
ced5ed3
f709b40
ec9c412
0c02838
8b77feb
 
f709b40
3cf9bb8
82e1a57
ec9c412
f709b40
2248513
3353cdd
 
323cba4
45e1c9f
3353cdd
db162d3
30480ad
42fbae5
03fc0e1
42fbae5
 
 
 
86445de
f74d64c
fef7cfb
 
27c3a91
1b67d04
fef7cfb
 
27c3a91
861654a
f709b40
 
 
3cf9bb8
27c3a91
f74d64c
f709b40
 
 
 
c80f584
f709b40
 
 
 
a699d4a
f709b40
c80f584
f709b40
fef7cfb
0dc2f2a
6c97556
f3ec65b
8f5e87a
0b87614
 
 
fef7cfb
0b87614
6c97556
f709b40
0dc2f2a
 
 
 
 
f709b40
816b85e
 
 
 
 
 
 
 
 
 
323cba4
fef7cfb
 
072cbdb
 
87394d1
86afb6f
 
 
177c731
86afb6f
f709b40
ec9c412
 
 
 
 
 
 
 
3587df4
ec9c412
 
 
 
42fbae5
8c244cb
cfb5afd
42fbae5
 
fef7cfb
 
ef5280a
ec9c412
fef7cfb
ec9c412
0dc2f2a
ec9c412
9a81190
ec9c412
ea4e3ad
b174961
 
fef7cfb
 
ec9c412
fef7cfb
b174961
ef5280a
42fbae5
8a1955c
177c731
 
6693bcd
8cb9420
 
aa43dfd
8cb9420
 
 
e6c7289
2a82005
093909b
ef5280a
5337fdc
8cb9420
2a82005
ec9c412
 
8a1955c
c3e7c77
6693bcd
 
 
e6c7289
8a1955c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
# ---------------------------------------------------for backend looks-------------------------------------------------

#with open('/usr/local/lib/python3.10/site-packages/transformers/utils/chat_template_utils.py', 'r') as file:
    #content = file.read()
    #print("base.py:", content)
# ------------------------------------------------------the end--------------------------------------------------------



# ===========================================
# aha-----app.py
# ===========================================

import asyncio
import os
import re
import time
import json

import chainlit as cl
from dotenv import load_dotenv

from langchain_community.tools.requests.tool import RequestsPostTool
from langchain_community.utilities.requests import TextRequestsWrapper
from langchain_community.utilities.requests import JsonRequestsWrapper

from langchain import hub
from langchain_openai import OpenAI
from tiktoken import encoding_for_model
from langchain.chains import LLMChain, APIChain
from langchain_core.prompts import PromptTemplate
from langchain.memory.buffer import ConversationBufferMemory
#from langchain.memory import ConversationTokenBufferMemory
#from langchain.memory import ConversationSummaryMemory

from api_docs import api_docs_str

load_dotenv()
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")

auth_token = os.environ.get("CHAINLIT_AUTH_SECRET")
if not auth_token.startswith("Bearer "):
    auth_token = f"Bearer {auth_token}"



daysoff_assistant_template = """
#You are a customer support assistant (’kundeservice AI assistent’) for Daysoff.
#By default, you respond in Norwegian language, using a warm, direct, and professional tone.
Your expertise is exclusively in retrieving booking information for a given booking ID assistance related to
to this.
You do not provide information outside of this scope. If a question is not about this topic, respond with
"Jeg driver faktisk kun med henvendelser omkring bestillingsinformasjon. Gjelder det andre henvendelser
må du nok kontakte kundeservice på [email protected]😊"
Chat History: {chat_history}
Question: {question}
Answer:
"""
daysoff_assistant_prompt = PromptTemplate(
    input_variables=['chat_history', 'question'],
    template=daysoff_assistant_template
)

api_url_template = """
Given the following API Documentation for Daysoff's official
booking information API: {api_docs}
Your task is to construct the most efficient API URL to answer
the user's question, ensuring the
call is optimized to include only the necessary information.
Question: {question}
API URL:
"""
api_url_prompt = PromptTemplate(input_variables=['api_docs', 'question'],
                                template=api_url_template)

api_response_template = """
With the API Documentation for Daysoff's official API: {api_docs} in mind,
and the specific user question: {question},
and given this API URL: {api_url} for querying,
and response from Daysoff's API: {api_response},
never refer the user to the API URL as your answer!
You should always provide a clear and concise summary (in Norwegian) of the booking information retrieved.
This way you directly address the user's question in a manner that reflects the professionalism and warmth
of a human customer service agent.
Summary:
"""
api_response_prompt = PromptTemplate(
    input_variables=['api_docs', 'question', 'api_url', 'api_response'],
    template=api_response_template
)

@cl.on_chat_start
def setup_multiple_chains():
    llm = OpenAI(
        model='gpt-3.5-turbo-instruct',
        temperature=0.7,
        openai_api_key=OPENAI_API_KEY,
        max_tokens=2048,
        top_p=0.9,
        frequency_penalty=0.1,
        presence_penalty=0.1
    )

    conversation_memory = ConversationBufferMemory(memory_key="chat_history",
                                                   max_len=30,
                                                   return_messages=True,
    )

    llm_chain = LLMChain(
        llm=llm,
        prompt=daysoff_assistant_prompt,
        memory=conversation_memory
    )

    cl.user_session.set("llm_chain", llm_chain)

    api_chain = APIChain.from_llm_and_api_docs(
        llm=llm,
        api_docs=api_docs_str,
        api_url_prompt=api_url_prompt,
        api_response_prompt=api_response_prompt,
        verbose=True,
        limit_to_domains=None
    )

    cl.user_session.set("api_chain", api_chain)


    requests_wrapper = TextRequestsWrapper(     
        headers={
            "Authorization": auth_token,
            "Content-Type": "application/json"
        }
    )
   
    post_tool = RequestsPostTool(
        requests_wrapper=requests_wrapper,
        allow_dangerous_requests=True
    )

    cl.user_session.set("post_tool", post_tool)


@cl.on_message
async def handle_message(message: cl.Message):
    user_message = message.content
    llm_chain = cl.user_session.get("llm_chain")
    api_chain = cl.user_session.get("api_chain")
    post_tool = cl.user_session.get("post_tool")

    api_url = "https://aivisions.no/data/daysoff/api/v1/booking/"
    booking_pattern = r'\b[A-Z]{6}\d{6}\b'   
    match = re.search(booking_pattern, user_message)
    
    
    if match:
        bestillingskode = match.group()
        post_data = {
            "url": api_url,
            "body": {
                "booking_id": bestillingskode
            }
        }

        response = await post_tool.ainvoke(
            json.dumps(post_data),
            config={"callbacks": [cl.AsyncLangchainCallbackHandler()]}
        )
               
    else:
        response = await llm_chain.ainvoke(user_message, callbacks=[cl.AsyncLangchainCallbackHandler()])


    response_key = "output" if "output" in response else "text"
    await cl.Message(response.get(response_key, "")).send()
    return message.content