File size: 7,096 Bytes
1aa3c43 c51467e 1aa3c43 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
# ---------------------------------------------------for backend looks-------------------------------------------------
#with open('/usr/local/lib/python3.10/site-packages/transformers/utils/chat_template_utils.py', 'r') as file:
#content = file.read()
#print("base.py:", content)
# ------------------------------------------------------the end--------------------------------------------------------
# ===========================================
# ver1(get)_app.py
# ===========================================
import asyncio
import os
import re
import time
import json
import chainlit as cl
from dotenv import load_dotenv
from langchain import hub
from langchain_openai import OpenAI
from tiktoken import encoding_for_model
from langchain.chains import LLMChain, APIChain
from langchain_core.prompts import PromptTemplate
from langchain.memory.buffer import ConversationBufferMemory
#from langchain.memory import ConversationTokenBufferMemory
#from langchain.memory import ConversationSummaryMemory
from api_docs_mck import api_docs_str
load_dotenv()
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")
#auth_token = os.environ.get("CHAINLIT_AUTH_SECRET")
#if not auth_token.startswith("Bearer "):
#auth_token = f"Bearer {auth_token}"
daysoff_assistant_template = """
#You are a customer support assistant (’kundeservice AI assistent’) for Daysoff.
#By default, you respond in Norwegian language, using a warm, direct, and professional tone.
Your expertise is exclusively in retrieving booking information for a given booking ID assistance related to
to this.
You do not provide information outside of this scope. If a question is not about this topic, respond with
"Jeg driver faktisk kun med henvendelser omkring bestillingsinformasjon. Gjelder det andre henvendelser
må du nok kontakte kundeservice på [email protected]😊"
Chat History: {chat_history}
Question: {question}
Answer:
"""
daysoff_assistant_prompt = PromptTemplate(
input_variables=['chat_history', 'question'],
template=daysoff_assistant_template
)
api_url_template = """
Given the following API Documentation for Daysoff's official
booking information API: {api_docs}
Your task is to construct the most efficient API URL to answer
the user's question, ensuring the
call is optimized to include only the necessary information.
Question: {question}
API URL:
"""
api_url_prompt = PromptTemplate(input_variables=['api_docs', 'question'],
template=api_url_template)
api_response_template = """
With the API Documentation for Daysoff's official API: {api_docs} in mind,
and the specific user question: {question},
and given this API URL: {api_url} for querying,
and response from Daysoff's API: {api_response},
never refer the user to the API URL as your answer!
You should always provide a clear and concise summary (in Norwegian) of the booking information retrieved.
This way you directly address the user's question in a manner that reflects the professionalism and warmth
of a human customer service agent.
Summary:
"""
api_response_prompt = PromptTemplate(
input_variables=['api_docs', 'question', 'api_url', 'api_response'],
template=api_response_template
)
@cl.on_chat_start
def setup_multiple_chains():
llm = OpenAI(
model='gpt-3.5-turbo-instruct',
temperature=0.7,
openai_api_key=OPENAI_API_KEY,
max_tokens=2048,
top_p=0.9,
frequency_penalty=0.1,
presence_penalty=0.1
)
conversation_memory = ConversationBufferMemory(memory_key="chat_history",
max_len=30,
return_messages=True,
)
llm_chain = LLMChain(
llm=llm,
prompt=daysoff_assistant_prompt,
memory=conversation_memory
)
cl.user_session.set("llm_chain", llm_chain)
api_chain = APIChain.from_llm_and_api_docs(
llm=llm,
api_docs=api_docs_str,
api_url_prompt=api_url_prompt,
api_response_prompt=api_response_prompt,
verbose=True,
limit_to_domains=None
)
cl.user_session.set("api_chain", api_chain)
cl.on_message
async def handle_message(message: cl.Message):
user_message = message.content.lower()
llm_chain = cl.user_session.get("llm_chain")
api_chain = cl.user_session.get("api_chain")
base_url = "https://670dccd0073307b4ee447f2f.mockapi.io/daysoff/api/V1/booking"
booking_pattern = r'\b[A-Z]{6}\d{6}\b'
match = re.search(booking_pattern, user_message)
try:
if match:
bestillingskode = match.group()
question = f"Retrieve information for booking ID {base_url}?search={bestillingskode}"
response = await api_chain.acall(
{
"bestillingskode": bestillingskode,
"question": question
},
callbacks=[cl.AsyncLangchainCallbackHandler()])
booking_info = json.loads(response.get("output", "{}"))
formatted_response = f"""
Her er informasjon for bestillingskode: {bestillingskode}
| Felt | Detaljer |
|-------------|----------------------------------------|
| Navn: | {booking_info.get('Navn', 'N/A')} |
| Beløp: | {booking_info.get('Beløp', 'N/A')} NOK |
| Check-In: | {booking_info.get('Checkin', 'N/A')} |
| Check-Out: | {booking_info.get('Checkout', 'N/A')} |
| Addresse: | {booking_info.get('Addresse', 'N/A')} |
| Bruker ID: | {booking_info.get('Bruker ID', 'N/A')} |
| Viktig informasjon: | {booking_info.get('Viktig informasjon', 'N/A')} |
| Message: | {booking_info.get('Message', 'N/A')} |
"""
await cl.Message(content=formatted_response).send()
else:
await cl.Message("Jeg kan desverre ikke finne noen informasjon for det oppgitte bookingnummeret.").send()
else:
response = await llm_chain.acall(user_message, callbacks=[cl.AsyncLangchainCallbackHandler()])
except Exception as e:
response = {"output": "Jeg får desverre ikke fram noe informasjon akkurat nå."}
response_key = "output" if "output" in response else "text"
return message.content
"""
if match:
bestillingskode = match.group()
question = f"Retrieve information for booking ID"
api_url = f"{base_url}?search={booking_id}"
response = await api_chain.acall(
{
"booking_id": bestillingskode,
"question": question,
"api_url": api_url
},
callbacks=[cl.AsyncLangchainCallbackHandler()])
else:
response = await llm_chain.acall(user_message,
callbacks=[cl.AsyncLangchainCallbackHandler()])
response_key = "output" if "output" in response else "text"
await cl.Message(response.get(response_key, "")).send()
return message.content
""" |