File size: 7,096 Bytes
1aa3c43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c51467e
1aa3c43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
# ---------------------------------------------------for backend looks-------------------------------------------------

#with open('/usr/local/lib/python3.10/site-packages/transformers/utils/chat_template_utils.py', 'r') as file:
    #content = file.read()
    #print("base.py:", content)
# ------------------------------------------------------the end--------------------------------------------------------



# ===========================================
# ver1(get)_app.py
# ===========================================

import asyncio
import os
import re
import time
import json

import chainlit as cl
from dotenv import load_dotenv

from langchain import hub
from langchain_openai import OpenAI
from tiktoken import encoding_for_model
from langchain.chains import LLMChain, APIChain
from langchain_core.prompts import PromptTemplate
from langchain.memory.buffer import ConversationBufferMemory
#from langchain.memory import ConversationTokenBufferMemory
#from langchain.memory import ConversationSummaryMemory


from api_docs_mck import api_docs_str

load_dotenv()
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")

#auth_token = os.environ.get("CHAINLIT_AUTH_SECRET")
#if not auth_token.startswith("Bearer "):
    #auth_token = f"Bearer {auth_token}"

daysoff_assistant_template = """
#You are a customer support assistant (’kundeservice AI assistent’) for Daysoff.
#By default, you respond in Norwegian language, using a warm, direct, and professional tone.
Your expertise is exclusively in retrieving booking information for a given booking ID assistance related to
to this.
You do not provide information outside of this scope. If a question is not about this topic, respond with
"Jeg driver faktisk kun med henvendelser omkring bestillingsinformasjon. Gjelder det andre henvendelser
må du nok kontakte kundeservice på [email protected]😊"
Chat History: {chat_history}
Question: {question}
Answer:
"""
daysoff_assistant_prompt = PromptTemplate(
    input_variables=['chat_history', 'question'],
    template=daysoff_assistant_template
)

api_url_template = """
Given the following API Documentation for Daysoff's official
booking information API: {api_docs}
Your task is to construct the most efficient API URL to answer
the user's question, ensuring the
call is optimized to include only the necessary information.
Question: {question}
API URL:
"""
api_url_prompt = PromptTemplate(input_variables=['api_docs', 'question'],
                                template=api_url_template)

api_response_template = """
With the API Documentation for Daysoff's official API: {api_docs} in mind,
and the specific user question: {question},
and given this API URL: {api_url} for querying,
and response from Daysoff's API: {api_response},
never refer the user to the API URL as your answer!
You should always provide a clear and concise summary (in Norwegian) of the booking information retrieved.
This way you directly address the user's question in a manner that reflects the professionalism and warmth
of a human customer service agent.
Summary:
"""
api_response_prompt = PromptTemplate(
    input_variables=['api_docs', 'question', 'api_url', 'api_response'],
    template=api_response_template
)

@cl.on_chat_start
def setup_multiple_chains():
    llm = OpenAI(
        model='gpt-3.5-turbo-instruct',
        temperature=0.7,
        openai_api_key=OPENAI_API_KEY,
        max_tokens=2048,
        top_p=0.9,
        frequency_penalty=0.1,
        presence_penalty=0.1
    )

    conversation_memory = ConversationBufferMemory(memory_key="chat_history",
                                                   max_len=30,
                                                   return_messages=True,
    )

    llm_chain = LLMChain(
        llm=llm,
        prompt=daysoff_assistant_prompt,
        memory=conversation_memory
    )

    cl.user_session.set("llm_chain", llm_chain)

    api_chain = APIChain.from_llm_and_api_docs(
        llm=llm,
        api_docs=api_docs_str,
        api_url_prompt=api_url_prompt,
        api_response_prompt=api_response_prompt,
        verbose=True,
        limit_to_domains=None
    )

    cl.user_session.set("api_chain", api_chain)

cl.on_message
async def handle_message(message: cl.Message):
    user_message = message.content.lower()
    llm_chain = cl.user_session.get("llm_chain")
    api_chain = cl.user_session.get("api_chain")

    base_url = "https://670dccd0073307b4ee447f2f.mockapi.io/daysoff/api/V1/booking"
    booking_pattern = r'\b[A-Z]{6}\d{6}\b'
    match = re.search(booking_pattern, user_message)

    try:

        if match:
        bestillingskode = match.group()
        question = f"Retrieve information for booking ID {base_url}?search={bestillingskode}"

        response = await api_chain.acall(
            {
                "bestillingskode": bestillingskode,
                "question": question

            },
            callbacks=[cl.AsyncLangchainCallbackHandler()])

        booking_info = json.loads(response.get("output", "{}"))

        formatted_response = f"""
        Her er informasjon for bestillingskode: {bestillingskode}

        | Felt        | Detaljer                               |
        |-------------|----------------------------------------|
        | Navn:       | {booking_info.get('Navn', 'N/A')} |
        | Beløp:      | {booking_info.get('Beløp', 'N/A')} NOK |
        | Check-In:   | {booking_info.get('Checkin', 'N/A')} |
        | Check-Out:  | {booking_info.get('Checkout', 'N/A')} |
        | Addresse:   | {booking_info.get('Addresse', 'N/A')} |
        | Bruker ID:  | {booking_info.get('Bruker ID', 'N/A')} |
        | Viktig informasjon:  | {booking_info.get('Viktig informasjon', 'N/A')} |
        | Message:  | {booking_info.get('Message', 'N/A')} |
        """

        await cl.Message(content=formatted_response).send()

            else:
                await cl.Message("Jeg kan desverre ikke finne noen informasjon for det oppgitte bookingnummeret.").send()

        else:
            response = await llm_chain.acall(user_message, callbacks=[cl.AsyncLangchainCallbackHandler()])

    except Exception as e:
        response = {"output": "Jeg får desverre ikke fram noe informasjon akkurat nå."}

    response_key = "output" if "output" in response else "text"

    return message.content




"""
 if match:
        bestillingskode = match.group()
        question = f"Retrieve information for booking ID"

            api_url = f"{base_url}?search={booking_id}"

            response = await api_chain.acall(
                {
                    "booking_id": bestillingskode,
                    "question": question,
                    "api_url": api_url
                },
                callbacks=[cl.AsyncLangchainCallbackHandler()])
    else:
        response = await llm_chain.acall(user_message,
                                         callbacks=[cl.AsyncLangchainCallbackHandler()])
        
    response_key = "output" if "output" in response else "text"
    await cl.Message(response.get(response_key, "")).send()
    return message.content



"""