camparchimedes's picture
Update app.py
b174961 verified
raw
history blame
8.02 kB
# ===========================================
# ver01.01-5.workload-----app.py
# ===========================================
import asyncio
import concurrent.futures
import os
import re
import time
import json
import chainlit as cl
from dotenv import load_dotenv
from langchain import hub
from langchain_openai import OpenAI
from tiktoken import encoding_for_model
from langchain.chains import LLMChain, APIChain
from langchain_core.prompts import PromptTemplate
from langchain.memory.buffer import ConversationBufferMemory
from langchain.memory import ConversationTokenBufferMemory
from langchain.memory import ConversationSummaryMemory
#from api_docs_mck import api_docs_str
from api_docs import api_docs_str, auth_token
load_dotenv()
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")
auth = os.environ.get("CHAINLIT_AUTH_SECRET")
daysoff_assistant_template = """
#You are a customer support assistant (’kundeservice AI assistent’) for Daysoff.
#By default, you respond in Norwegian language, using a warm, direct, and professional tone.
Your expertise is exclusively in retrieving booking information for a given booking ID assistance related to
to this.
You do not provide information outside of this scope. If a question is not about this topic, respond with
"Jeg driver faktisk kun med henvendelser omkring bestillingsinformasjon. Gjelder det andre henvendelser
må du nok kontakte kundeservice på [email protected]😊"
Chat History: {chat_history}
Question: {question}
Answer:
"""
daysoff_assistant_prompt = PromptTemplate(
input_variables=['chat_history', 'question'],
template=daysoff_assistant_template
)
api_url_template = """
Given the following API Documentation for Daysoff's official
booking information API: {api_docs}
Your task is to construct the most efficient API URL to answer
the user's question, ensuring the
call is optimized to include only the necessary information.
Question: {question}
API URL:
"""
api_url_prompt = PromptTemplate(input_variables=['api_docs', 'question'],
template=api_url_template)
api_response_template = """
With the API Documentation for Daysoff's official API: {api_docs} in mind,
and the specific user question: {question},
and given this API URL: {api_url} for querying,
and response from Daysoff's API: {api_response},
never refer the user to the API URL as your answer!
You should always provide a clear and concise summary (in Norwegian) of the booking information retrieved.
This way you directly address the user's question in a manner that reflects the professionalism and warmth
of a human customer service agent.
Summary:
"""
api_response_prompt = PromptTemplate(
input_variables=['api_docs', 'question', 'api_url', 'api_response'],
template=api_response_template
)
#async def on_chat_start():
#app_user = cl.user_session.get("user")
#user_env = cl.user_session.get("env")
#await cl.Message(f"Hello {app_user.identifier}").send()
#@cl.on_chat_start
#async def on_chat_start():
#app_user = cl.user_session.get("user")
#await cl.Message(f"Hello {app_user}").send()
@cl.on_chat_start
def setup_multiple_chains():
llm = OpenAI(
model='gpt-3.5-turbo-instruct',
temperature=0.7,
openai_api_key=OPENAI_API_KEY,
max_tokens=2048,
top_p=0.9,
frequency_penalty=0.1,
presence_penalty=0.1
)
conversation_memory = ConversationBufferMemory(memory_key="chat_history",
max_len=30,
return_messages=True,
)
llm_chain = LLMChain(
llm=llm,
prompt=daysoff_assistant_prompt,
memory=conversation_memory,
)
cl.user_session.set("llm_chain", llm_chain)
api_chain = APIChain.from_llm_and_api_docs(
llm=llm,
api_docs=api_docs_str,
api_url_prompt=api_url_prompt,
api_response_prompt=api_response_prompt,
verbose=True,
limit_to_domains=["http://0.0.0.0:7860/"]
)
cl.user_session.set("api_chain", api_chain)
"""
@cl.on_message
async def handle_message(message: cl.Message):
user_message = message.content #.lower()
llm_chain = cl.user_session.get("llm_chain")
api_chain = cl.user_session.get("api_chain")
booking_pattern = r'\b[A-Z]{6}\d{6}\b'
endpoint_url = "https://aivisions.no/data/daysoff/api/v1/booking/"
auth_token = f"Bearer {auth_token}
# --GET method
if re.search(booking_pattern, user_message):
bestillingskode = re.search(booking_pattern, user_message).group(0)
question = f"Retrieve information for booking ID {endpoint_url}?search={bestillingskode}&auth_token={auth_token}"
"
response = await api_chain.acall(
{
"bestillingskode": bestillingskode,
"question": question,
"auth_token": auth_token
},
callbacks=[cl.AsyncLangchainCallbackHandler()])
"""
"""
# --POST method, booking_id@body
if re.search(booking_pattern, user_message):
bestillingskode = re.search(booking_pattern, user_message).group(0)
question = f"Retrieve information for booking ID {bestillingskode}"
response = await api_chain.acall(
{
"url": endpoint_url,
"method": "POST",
"headers": {
"Authorization": f"Bearer {auth_token}",
"Content-Type": "application/json"
},
"body": {
"booking_id": bestillingskode
},
"question": question
},
callbacks=[cl.AsyncLangchainCallbackHandler()]
)
else:
response = await llm_chain.acall(user_message, callbacks=[cl.AsyncLangchainCallbackHandler()])
response_key = "output" if "output" in response else "text"
await cl.Message(response.get(response_key, "")).send()
return message.content
#endpoint_url = "https://670dccd0073307b4ee447f2f.mockapi.io/daysoff/api/V1/booking"
"""
@cl.on_message
async def handle_message(message: cl.Message):
user_message = message.content # Retrieve user message
llm_chain = cl.user_session.get("llm_chain") # Get LLM chain
api_chain = cl.user_session.get("api_chain") # Get API chain
booking_pattern = r'\b[A-Z]{6}\d{6}\b'
endpoint_url = "https://aivisions.no/data/daysoff/api/v1/booking/"
auth_token = "your_auth_token_here"
async def process_message():
if re.search(booking_pattern, user_message):
bestillingskode = re.search(booking_pattern, user_message).group(0)
question = f"Retrieve information for booking ID {bestillingskode}"
response = await api_chain.acall(
{
"url": endpoint_url,
"method": "POST",
"headers": {
"Authorization": f"Bearer {auth_token}",
"Content-Type": "application/json",
},
"body": { # JSON body sent in POST request
"booking_id": bestillingskode,
},
"question": question,
},
callbacks=[cl.AsyncLangchainCallbackHandler()],
)
else:
response = await llm_chain.acall(user_message, callbacks=[cl.AsyncLangchainCallbackHandler()])
response_key = "output" if "output" in response else "text"
await cl.Message(response.get(response_key, "")).send()
return message.content
# Concurrent execution using ThreadPoolExecutor
loop = asyncio.get_running_loop()
with concurrent.futures.ThreadPoolExecutor() as pool:
await loop.run_in_executor(pool, lambda: asyncio.run(process_message()))