|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import asyncio |
|
import os |
|
import re |
|
import time |
|
import json |
|
import torch |
|
|
|
import logging |
|
|
|
from api_docs_mck import api_docs_str |
|
|
|
import chainlit as cl |
|
|
|
from langchain import hub |
|
from langchain.chains import LLMChain, APIChain |
|
from langchain_core.prompts import PromptTemplate |
|
from langchain.memory.buffer import ConversationBufferMemory |
|
|
|
from langchain_openai import OpenAI |
|
|
|
from langchain_community.llms import HuggingFaceHub |
|
from langchain_huggingface import HuggingFacePipeline |
|
from langchain_huggingface import HuggingFaceEndpoint |
|
from langchain_core.callbacks.streaming_stdout import StreamingStdOutCallbackHandler |
|
|
|
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY") |
|
|
|
|
|
|
|
|
|
BOOKING_KEYWORDS = [ |
|
"booking", |
|
"bestillingsnummer", |
|
"bookingen", |
|
"ordrenummer", |
|
"reservation", |
|
"rezerwacji", |
|
"bookingreferanse", |
|
"rezerwacja", |
|
"booket", |
|
"reservation number", |
|
"bestilling", |
|
"order number", |
|
"booking ID", |
|
"identyfikacyjny płatności" |
|
] |
|
|
|
daysoff_assistant_template = """ |
|
You are a customer support assistant (’kundeservice AI assistent’) for Daysoff.no |
|
By default, you respond in Norwegian language, using a warm, direct and professional tone. |
|
Your expertise is exclusively in in providing information related to a given booking ID (’bestillingsnummer’) |
|
and booking-related queries such as firmahytteordning and personvernspolicy. |
|
You do not provide information outside of this scope. If a question is not about booking or booking-related queries, |
|
respond with, "Ønsker du annen informasjon, må du kontakte oss her på [email protected]" |
|
Chat History: {chat_history} |
|
Question: {question} |
|
Answer: |
|
""" |
|
|
|
daysoff_assistant_prompt= PromptTemplate( |
|
input_variables=["chat_history", "question"], |
|
template=daysoff_assistant_template |
|
) |
|
|
|
api_url_template = """ |
|
Given the following API Documentation for Daysoff's official |
|
booking information API: {api_docs} |
|
Your task is to construct the most efficient API URL to answer |
|
the user's question, ensuring the |
|
call is optimized to include only the necessary information. |
|
Question: {question} |
|
API URL: |
|
""" |
|
api_url_prompt = PromptTemplate(input_variables=['api_docs', 'question'], |
|
template=api_url_template) |
|
|
|
|
|
api_response_template = """ |
|
With the API Documentation for Daysoff's official API: {api_docs} in mind, |
|
and the specific user question: {question} in mind, |
|
and given this API URL: {api_url} for querying, |
|
here is the response from Daysoff's API: {api_response}. |
|
Please provide an summary (in Norwegian) that directly addresses the user's question, |
|
omitting technical details like response format, and |
|
focusing on delivering the answer with clarity and conciseness, |
|
as if a human customer service agent is providing this information. |
|
Summary: |
|
""" |
|
|
|
api_response_prompt = PromptTemplate( |
|
input_variables=['api_docs', 'question', 'api_url', 'api_response'], |
|
template=api_response_template |
|
) |
|
|
|
@cl.on_chat_start |
|
def setup_multiple_chains(): |
|
|
|
llm = OpenAI( |
|
model='gpt-3.5-turbo-instruct', |
|
temperature=0.7, |
|
openai_api_key=OPENAI_API_KEY, |
|
|
|
top_p=0.9, |
|
frequency_penalty=0.5, |
|
presence_penalty=0.3 |
|
) |
|
|
|
conversation_memory = ConversationBufferMemory(memory_key="chat_history", |
|
max_len=300, |
|
return_messages=True, |
|
) |
|
llm_chain = LLMChain(llm=llm, |
|
prompt=daysoff_assistant_prompt, |
|
memory=conversation_memory |
|
) |
|
|
|
cl.user_session.set("llm_chain", llm_chain) |
|
|
|
api_chain = APIChain.from_llm_and_api_docs( |
|
llm=llm, |
|
api_docs=api_docs_str, |
|
api_url_prompt=api_url_prompt, |
|
api_response_prompt=api_response_prompt, |
|
verbose=True, |
|
limit_to_domains=None |
|
) |
|
|
|
cl.user_session.set("api_chain", api_chain) |
|
|
|
@cl.on_message |
|
async def handle_message(message: cl.Message): |
|
user_message = message.content |
|
llm_chain = cl.user_session.get("llm_chain") |
|
api_chain = cl.user_session.get("api_chain") |
|
|
|
booking_pattern = r'\b[A-Z]{6}\d{6}\b' |
|
base_url = "https://670dccd0073307b4ee447f2f.mockapi.io/daysoff/api/V1/booking" |
|
|
|
if re.search(booking_pattern, user_message): |
|
booking_id = re.search(booking_pattern, user_message).group(0) |
|
question = f"Retrieve information for booking ID {booking_id}" |
|
|
|
url = f"{base_url}?search={booking_id}" |
|
|
|
response = await api_chain.acall( |
|
{ |
|
"booking_id": booking_id, |
|
"question": question, |
|
"url": url |
|
}, |
|
callbacks=[cl.AsyncLangchainCallbackHandler()]) |
|
|
|
else: |
|
|
|
|
|
|
|
|
|
response = await llm_chain.acall(user_message, callbacks=[cl.AsyncLangchainCallbackHandler()]) |
|
|
|
response_key = "output" if "output" in response else "text" |
|
await cl.Message(response.get(response_key, "")).send() |
|
return message.content |
|
|