# ---------------------------------------------------for backend looks------------------------------------------------- #with open('/usr/local/lib/python3.10/site-packages/transformers/utils/chat_template_utils.py', 'r') as file: #content = file.read() #print("base.py:", content) # ------------------------------------------------------the end-------------------------------------------------------- # =========================================== # ver1(get)_app.py # =========================================== import asyncio import os import re import time import json import chainlit as cl from dotenv import load_dotenv from langchain import hub from langchain_openai import OpenAI from tiktoken import encoding_for_model from langchain.chains import LLMChain, APIChain from langchain_core.prompts import PromptTemplate from langchain.memory.buffer import ConversationBufferMemory #from langchain.memory import ConversationTokenBufferMemory #from langchain.memory import ConversationSummaryMemory from api_docs_mck import api_docs_str load_dotenv() OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY") #auth_token = os.environ.get("CHAINLIT_AUTH_SECRET") #if not auth_token.startswith("Bearer "): #auth_token = f"Bearer {auth_token}" daysoff_assistant_template = """ #You are a customer support assistant (’kundeservice AI assistent’) for Daysoff. #By default, you respond in Norwegian language, using a warm, direct, and professional tone. Your expertise is exclusively in retrieving booking information for a given booking ID assistance related to to this. You do not provide information outside of this scope. If a question is not about this topic, respond with "Jeg driver faktisk kun med henvendelser omkring bestillingsinformasjon. Gjelder det andre henvendelser må du nok kontakte kundeservice på kundeservice@daysoff.no😊" Chat History: {chat_history} Question: {question} Answer: """ daysoff_assistant_prompt = PromptTemplate( input_variables=['chat_history', 'question'], template=daysoff_assistant_template ) api_url_template = """ Given the following API Documentation for Daysoff's official booking information API: {api_docs} Your task is to construct the most efficient API URL to answer the user's question, ensuring the call is optimized to include only the necessary information. Question: {question} API URL: """ api_url_prompt = PromptTemplate(input_variables=['api_docs', 'question'], template=api_url_template) api_response_template = """ With the API Documentation for Daysoff's official API: {api_docs} in mind, and the specific user question: {question}, and given this API URL: {api_url} for querying, and response from Daysoff's API: {api_response}, never refer the user to the API URL as your answer! You should always provide a clear and concise summary (in Norwegian) of the booking information retrieved. This way you directly address the user's question in a manner that reflects the professionalism and warmth of a human customer service agent. Summary: """ api_response_prompt = PromptTemplate( input_variables=['api_docs', 'question', 'api_url', 'api_response'], template=api_response_template ) @cl.on_chat_start def setup_multiple_chains(): llm = OpenAI( model='gpt-3.5-turbo-instruct', temperature=0.7, openai_api_key=OPENAI_API_KEY, max_tokens=2048, top_p=0.9, frequency_penalty=0.1, presence_penalty=0.1 ) conversation_memory = ConversationBufferMemory(memory_key="chat_history", max_len=30, return_messages=True, ) llm_chain = LLMChain( llm=llm, prompt=daysoff_assistant_prompt, memory=conversation_memory ) cl.user_session.set("llm_chain", llm_chain) api_chain = APIChain.from_llm_and_api_docs( llm=llm, api_docs=api_docs_str, api_url_prompt=api_url_prompt, api_response_prompt=api_response_prompt, verbose=True, limit_to_domains=None ) cl.user_session.set("api_chain", api_chain) cl.on_message async def handle_message(message: cl.Message): user_message = message.content.lower() llm_chain = cl.user_session.get("llm_chain") api_chain = cl.user_session.get("api_chain") base_url = "https://670dccd0073307b4ee447f2f.mockapi.io/daysoff/api/V1/booking" booking_pattern = r'\b[A-Z]{6}\d{6}\b' match = re.search(booking_pattern, user_message) try: if match: bestillingskode = match.group() question = f"Retrieve information for booking ID {base_url}?search={bestillingskode}" response = await api_chain.acall( { "bestillingskode": bestillingskode, "question": question }, callbacks=[cl.AsyncLangchainCallbackHandler()]) booking_info = json.loads(response.get("output", "{}")) formatted_response = f""" Her er informasjon for bestillingskode: {bestillingskode} | Felt | Detaljer | |-------------|----------------------------------------| | Navn: | {booking_info.get('Navn', 'N/A')} | | Beløp: | {booking_info.get('Beløp', 'N/A')} NOK | | Check-In: | {booking_info.get('Checkin', 'N/A')} | | Check-Out: | {booking_info.get('Checkout', 'N/A')} | | Addresse: | {booking_info.get('Addresse', 'N/A')} | | Bruker ID: | {booking_info.get('Bruker ID', 'N/A')} | | Viktig informasjon: | {booking_info.get('Viktig informasjon', 'N/A')} | | Message: | {booking_info.get('Message', 'N/A')} | """ await cl.Message(content=formatted_response).send() else: await cl.Message("Jeg kan desverre ikke finne noen informasjon for det oppgitte bookingnummeret.").send() else: response = await llm_chain.acall(user_message, callbacks=[cl.AsyncLangchainCallbackHandler()]) except Exception as e: response = {"output": "Jeg får desverre ikke fram noe informasjon akkurat nå."} response_key = "output" if "output" in response else "text" return message.content """ if match: bestillingskode = match.group() question = f"Retrieve information for booking ID" api_url = f"{base_url}?search={booking_id}" response = await api_chain.acall( { "booking_id": bestillingskode, "question": question, "api_url": api_url }, callbacks=[cl.AsyncLangchainCallbackHandler()]) else: response = await llm_chain.acall(user_message, callbacks=[cl.AsyncLangchainCallbackHandler()]) response_key = "output" if "output" in response else "text" await cl.Message(response.get(response_key, "")).send() return message.content """