Spaces:
Sleeping
Sleeping
File size: 5,565 Bytes
f79e226 f709b40 70ee030 f709b40 d7debf4 f709b40 c80f584 f709b40 c80f584 f709b40 c80f584 a699d4a c80f584 f709b40 a699d4a f709b40 c80f584 f709b40 a699d4a f709b40 c80f584 f709b40 0dc2f2a c80f584 a699d4a 0dc2f2a a699d4a 0dc2f2a f709b40 0dc2f2a f709b40 a699d4a c80f584 f709b40 48c5ac5 f709b40 c80f584 f709b40 0dc2f2a f709b40 a699d4a f709b40 a699d4a f709b40 a699d4a 62041d1 9d20b87 f709b40 a699d4a f709b40 a699d4a f709b40 c80f584 f709b40 a699d4a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
### title: 010125-daysoff-assistant-api
### file: app.py
import asyncio
import os
import re
import time
import json
import torch
from api_docs_mck import api_docs_str
import chainlit as cl
from langchain import hub
from langchain.chains import LLMChain, APIChain
from langchain_core.prompts import PromptTemplate
#from langchain_community.llms import HuggingFaceHub
from langchain_huggingface import HuggingFaceEndpoint
from langchain.memory.buffer import ConversationBufferMemory
HUGGINGFACEHUB_API_TOKEN = os.environ.get("HUGGINGFACEHUB_API_TOKEN")
BOOKING_ID = r'\b[A-Z]{6}\d{6}\b'
BOOKING_KEYWORDS = [
"booking",
"bestillingsnummer",
"bookingen",
"ordrenummer",
"reservation",
"rezerwacji",
"bookingreferanse",
"rezerwacja",
"logg inn",
"booket",
"reservation number",
"bestilling",
"order number",
"booking ID",
"identyfikacyjny pลatnoลci"
]
daysoff_assistant_booking_template = """
You are a Norwegian customer support AI assistant for Daysoff.no. By default,
you respond in Norwegian to user question: {question}. In all other cases,
adapt to user's language and respond accordingly.
You can retrieving booking information for a given booking ID and provide
general helpful info about Daysoff's services."
Chat History: {chat_history}
Question: {question}
Answer:
"""
daysoff_assistant_booking_prompt= PromptTemplate(
input_variables=["chat_history", "question"],
template=daysoff_assistant_booking_template
)
api_url_template = """
Given the following API Documentation for Daysoff's official
booking information API: {api_docs}
Your task is to construct the most efficient API URL to answer
the user's question, ensuring the
call is optimized to include only the necessary information.
Question: {question}
API URL:
"""
api_url_prompt = PromptTemplate(input_variables=['api_docs', 'question'],
template=api_url_template)
api_response_template = """
With the API Documentation for Daysoff's official API: {api_docs}
in mind, and IF {question} contains keywords from:{BOOKING_KEYWORDS},
and given this API URL: {api_url} for querying, here is the
response from Daysoff's API: {api_response}.
Please provide a summary that directly addresses the user's question,
omitting technical details like response format, and
focusing on delivering the answer with clarity and conciseness,
as if Daysoff's kundeservice is providing this information themselves.
Booking Info:
"""
api_response_prompt = PromptTemplate(
input_variables=['api_docs', 'question', 'api_url', 'api_response'],
template=api_response_template
)
@cl.on_chat_start
def setup_multiple_chains():
llm = HuggingFaceEndpoint(
repo_id="google/gemma-2-2b-it",
huggingfacehub_api_token=HUGGINGFACEHUB_API_TOKEN,
#max_new_tokens=512,
temperature=0.7,
task="text-generation"
)
conversation_memory = ConversationBufferMemory(memory_key="chat_history",
max_len=200,
return_messages=True,
)
llm_chain = LLMChain(llm=llm,
prompt=daysoff_assistant_booking_prompt,
memory=conversation_memory
)
cl.user_session.set("llm_chain", llm_chain)
api_chain = APIChain.from_llm_and_api_docs(
llm=llm,
api_docs=api_docs_str,
api_url_prompt=api_url_prompt,
api_response_prompt=api_response_prompt,
verbose=True,
limit_to_domains=None
)
cl.user_session.set("api_chain", api_chain)
import re
def extract_booking_id(user_message):
# Extract booking ID from user message
match = re.search(r'\b[A-Z]{6}\d{6}\b', user_message)
return match.group(0) if match else None
@cl.on_message
async def handle_message(message: cl.Message):
user_message = message.content.lower()
llm_chain = cl.user_session.get("llm_chain")
api_chain = cl.user_session.get("api_chain")
# booking_id = extract_booking_id(user_message)
#is_booking_query = any(
#re.search(keyword, user_message, re.IGNORECASE) # re.search(keyword, r'\b[A-Z]{6}\d{6}\b', user_message, re.IGNORECASE)
#for keyword in BOOKING_KEYWORDS + [BOOKING_ID]
#)
if any(keyword in user_message for keyword in ["BOOKING_KEYWORDS"]): # could be(?): if any(keyword in user_message for keyword in BOOKING_KEYWORDS + [BOOKING_ID]
# <f any of the keywords are in user_message>, use api_chain
response = await api_chain.acall(user_message,
callbacks=[cl.AsyncLangchainCallbackHandler()])
elif:
# <or if the booking_id regex format is discovered in user message>, use api_chain
re.search(keyword, r'\b[A-Z]{6}\d{6}\b', user_message):
response = await api_chain.acall(user_message,
callbacks=[cl.AsyncLangchainCallbackHandler()])
else:
response = await llm_chain.acall(user_message,
callbacks=[cl.AsyncLangchainCallbackHandler()])
response_key = "output" if "output" in response else "text"
await cl.Message(response.get(response_key, "")).send()
return message.content
# await cl.Message(response.get(response_key, "")).send()
# content=f"Her er informasjonen for bestillingsnummer {booking_id}:\n{booking_info}").send() |