File size: 7,879 Bytes
32f75ce
b18743f
32f75ce
b18743f
70ee030
f709b40
d7debf4
f709b40
 
 
 
32f75ce
f709b40
32f75ce
6038ecf
f709b40
3cf9bb8
32f75ce
 
f709b40
32f75ce
 
 
 
2248513
323cba4
 
 
32f75ce
a01015d
32f75ce
30480ad
32f75ce
a699d4a
4ee4906
9bf3ea7
32f75ce
 
4ee4906
32f75ce
 
 
84273a3
32f75ce
 
 
 
 
84273a3
32f75ce
 
 
 
 
 
 
 
 
 
 
 
03cadc5
 
32f75ce
 
 
 
84273a3
 
 
32f75ce
84273a3
 
 
 
 
 
 
 
 
3cf9bb8
352cce7
f74d64c
f709b40
 
 
 
c80f584
f709b40
 
 
 
a699d4a
f709b40
c80f584
f709b40
32f75ce
0dc2f2a
6c97556
f3ec65b
8f5e87a
0b87614
 
 
32f75ce
0b87614
6c97556
f709b40
0dc2f2a
 
 
 
 
9bf3ea7
f709b40
 
9bf3ea7
2ad00fd
32f75ce
9bf3ea7
32f75ce
 
9bf3ea7
32f75ce
9bf3ea7
 
32f75ce
 
9bf3ea7
 
 
 
 
 
32f75ce
9bf3ea7
 
32f75ce
 
2f87804
32f75ce
 
 
9bf3ea7
32f75ce
 
9bf3ea7
32f75ce
9bf3ea7
32f75ce
9bf3ea7
 
32f75ce
 
 
ea4e3ad
 
 
32f75ce
ea4e3ad
32f75ce
 
 
 
 
 
 
2f87804
32f75ce
 
 
2b8e181
 
4e02251
32f75ce
 
a8c9978
 
03cadc5
32f75ce
 
4e02251
 
 
2f87804
4e02251
c666f06
f0e43b6
c666f06
 
 
 
 
 
 
 
 
 
 
 
 
 
2b9a3de
 
e9b5af2
 
 
2f87804
32f75ce
 
 
 
 
9bf3ea7
 
32f75ce
9bf3ea7
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
# ===================================================
# "the-very-latest-latest-POST-it"-----app.py
# ===================================================

import asyncio
import os
import re
import time
import json

import chainlit as cl
from dotenv import load_dotenv

from pydantic import BaseModel, PrivateAttr

from langchain import hub
from langchain_openai import OpenAI
from tiktoken import encoding_for_model
from langchain.chains import LLMChain #APIChain
from langchain_core.prompts import PromptTemplate

from langchain_community.tools.requests.tool import RequestsPostTool
from langchain_community.utilities.requests import TextRequestsWrapper

from langchain.memory.buffer import ConversationBufferMemory
from langchain.memory import ConversationTokenBufferMemory
from langchain.memory import ConversationSummaryMemory

from api_docs import api_docs_str

load_dotenv()
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")
auth_token = os.getenv("DAYSOFF_API_TOKEN")



class EnhancedRequestsPostTool(RequestsPostTool, BaseModel):
    api_docs: str = api_docs_str

    # --PrivateAttr@dynanmc init attrbts
    _url_chain: LLMChain = PrivateAttr()
    _response_chain: LLMChain = PrivateAttr()

    def __init__(self, requests_wrapper, llm, api_docs_str, api_url_prompt, api_response_prompt):
        super().__init__(requests_wrapper=requests_wrapper, allow_dangerous_requests=True)
        object.__setattr__(self, 'api_docs', api_docs_str) # self.api_docs = api_docs_str
        object.__setattr__(self, 'url_chain', LLMChain(llm=llm, prompt=api_url_prompt))  # --dynanmc init1
        object.__setattr__(self, 'response_chain', LLMChain(llm=llm, prompt=api_response_prompt)) # --dynanmc init2

    async def ainvoke(self, input_data, callbacks=None):
        # -- create API URL
        url_response = await self.url_chain.ainvoke({
            "api_docs": self.api_docs,
            "question": input_data.get("question")
        })

        api_response = await super().ainvoke(input_data, callbacks) # --make POST request

        # --form(at) response/:response_chain
        formatted_response = await self.response_chain.ainvoke({
            "api_docs": self.api_docs,
            #"question": input_data.get("question"),
            #"api_url": url_response.get("text"),
            "api_response": api_response
        })

        return formatted_response

daysoff_assistant_template = """
#You are a customer support assistant (โ€™kundeservice AI assistentโ€™) for Daysoff.
#By default, you respond in Norwegian language, using a warm, direct, and professional tone.
Your expertise is exclusively in retrieving booking information for a given booking ID assistance related to
to this.
You do not provide information outside of this scope. If a question is not about this topic, respond with
"Jeg driver faktisk kun med henvendelser omkring bestillingsinformasjon. Gjelder det andre henvendelser
mรฅ du nok kontakte kundeservice pรฅ [email protected]๐Ÿ˜Š"
Chat History: {chat_history}
Question: {question}
Answer:
"""
daysoff_assistant_prompt = PromptTemplate(
    input_variables=['chat_history', 'question'],
    template=daysoff_assistant_template
)

api_url_template = """
Given the following API Documentation for Daysoff's official
booking information API: {api_docs}
Your task is to construct the most efficient API URL to answer
the user's question, ensuring the
call is optimized to include only the necessary information.
Question: {question}
API URL:
"""
api_url_prompt = PromptTemplate(input_variables=['api_docs', 'question'],
                                template=api_url_template)

api_response_template = """
With the API Documentation for Daysoff's official API: {api_docs} in mind,
and the specific user question: {question},
and given this API URL: {api_url} for querying,
and response from Daysoff's API: {api_response},
never refer the user to the API URL as your answer!
You should always provide a clear and concise summary (in Norwegian) of the booking information retrieved.
This way you directly address the user's question in a manner that reflects the professionalism and warmth
of a human customer service agent.
Summary:
"""
api_response_prompt = PromptTemplate(
    input_variables=['api_docs', 'question', 'api_url', 'api_response'],
    template=api_response_template
)


@cl.on_chat_start
def setup_multiple_chains():
    llm = OpenAI(
        model='gpt-3.5-turbo-instruct',
        temperature=0.7,
        openai_api_key=OPENAI_API_KEY,
        max_tokens=2048,
        top_p=0.9,
        frequency_penalty=0.1,
        presence_penalty=0.1
    )

    conversation_memory = ConversationBufferMemory(memory_key="chat_history",
                                                   max_len=30,
                                                   return_messages=True,
    )

    llm_chain = LLMChain(
        llm=llm,
        prompt=daysoff_assistant_prompt,
        memory=conversation_memory,
    )

    requests_wrapper = TextRequestsWrapper(
        headers={
            "Authorization": f"Bearer <auth_token>",
            "Content-Type": "application/json"
        }
    )

    post_tool = EnhancedRequestsPostTool(
        requests_wrapper=requests_wrapper,
        llm=llm,
        api_docs_str=api_docs_str,
        api_url_prompt=api_url_prompt,
        api_response_prompt=api_response_prompt
    )

    cl.user_session.set("llm_chain", llm_chain)
    cl.user_session.set("post_tool", post_tool)


@cl.on_message
async def handle_message(message: cl.Message):
    user_message = message.content
    llm_chain = cl.user_session.get("llm_chain")
    post_tool = cl.user_session.get("post_tool")

    booking_pattern = r'\b[A-Z]{6}\d{6}\b'
    endpoint_url = "https://aivisions.no/data/daysoff/api/v1/booking/"

    match = re.search(booking_pattern, user_message)
    if match:
        
        bestillingskode = match.group()
        post_data = {
            "url": endpoint_url,
            "body": { 
                "booking_id": bestillingskode
            }
        }

        response = await post_tool.ainvoke(
            json.dumps(post_data),
            [cl.AsyncLangchainCallbackHandler()]  # config={"callbacks": 
        )

        # --degug!
        print(f"Raw response: {response}")

        if response:
            try:
                booking_data = json.loads(response.get("output", "{}"))
                table = "| Field | Information |\n|---|---|\n"  

                table = f"""
                | Field       | Value              |
                |-------------|--------------------|
                | Booking ID  | {booking_data.get('booking_id', 'N/A')} |
                | Name        | {booking_data.get('full_name', 'N/A')} |
                | Amount      | {booking_data.get('amount', 'N/A')} kr |
                | Check-in    | {booking_data.get('checkin', 'N/A')} |
                | Check-out   | {booking_data.get('checkout', 'N/A')} |
                | Address     | {booking_data.get('address', 'N/A')} |
                | User ID     | {booking_data.get('user_id', 'N/A')} |
                | Info        | {booking_data.get('infotext', 'N/A')} |
                | Included    | {booking_data.get('included', 'N/A')} |
                """
                await cl.Message(content=table).send()
                
            except Exception as e:
                error_msg = f"Error: Could not parse the booking information. Details: {str(e)}"
            await cl.Message(error_msg).send()

    else:
        response = await llm_chain.ainvoke(
            user_message,                                # {"chat_history": "", "question": user_message}
        )
        await cl.Message(content=response).send()

    response_key = "output" if "output" in response else "text"

    await cl.Message(response.get(response_key, "")).send()
    return message.content