File size: 5,308 Bytes
f79e226
 
f709b40
70ee030
f709b40
d7debf4
f709b40
 
 
 
8318d4c
 
77d14f7
 
 
f709b40
 
 
 
 
 
c80f584
 
f709b40
 
8318d4c
c80f584
 
f74d64c
a699d4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f74d64c
 
 
 
 
 
861654a
f709b40
 
 
f74d64c
861654a
f74d64c
f709b40
 
 
 
c80f584
f709b40
 
 
 
a699d4a
f709b40
c80f584
f709b40
 
3dffd82
0dc2f2a
47d7912
3dffd82
 
335fa81
a699d4a
 
3dffd82
335fa81
f709b40
0dc2f2a
 
 
 
 
 
f709b40
 
a699d4a
c80f584
5607ea3
c80f584
 
 
 
 
 
f709b40
 
 
 
 
f74d64c
f709b40
 
 
 
 
48c5ac5
f709b40
c80f584
f709b40
 
 
2bb026b
0dc2f2a
 
f709b40
a699d4a
f709b40
 
 
8318d4c
f709b40
 
 
0975922
c5d3d49
0975922
 
 
 
 
 
 
5607ea3
8318d4c
e06eacc
f709b40
a699d4a
e06eacc
f709b40
 
c80f584
8318d4c
 
f709b40
 
a699d4a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
### title: 010125-daysoff-assistant-api
### file: app.py

import asyncio
import os
import re
import time
import json
import torch

import logging

from api_docs_mck import api_docs_str 
#from daysoff import daysoff_str                        ## make daysoff.py, put json info in dict.
#from personvernpolicy import personvernpolicy_str      ## make personvernpolicy.py, put json info in dict.

import chainlit as cl

from langchain import hub
from langchain.chains import LLMChain, APIChain
from langchain_core.prompts import PromptTemplate
#from langchain_community.llms import HuggingFaceHub
from langchain_huggingface import HuggingFaceEndpoint
from langchain.memory.buffer import ConversationBufferMemory

logging.basicConfig(level=logging.DEBUG)

HUGGINGFACEHUB_API_TOKEN = os.environ.get("HUGGINGFACEHUB_API_TOKEN")
BOOKING_ID = re.compile(r'\b[A-Z]{6}\d{6}\b')
BOOKING_KEYWORDS = [
    "booking",
    "bestillingsnummer",
    "bookingen",
    "ordrenummer",
    "reservation",
    "rezerwacji",
    "bookingreferanse",
    "rezerwacja",
    "booket",
    "reservation number",
    "bestilling",
    "order number",
    "booking ID",
    "identyfikacyjny pล‚atnoล›ci"
]


daysoff_assistant_template = """
You are a customer support assistant for Daysoff named "Agrippa". Your expertise is in retrieving 
booking details for a given booking ID and answering questions about
Daysoff's personvernspolicy and firmahytteordning. You do not provide information outside of this 
scope. By default, you respond in Norwegian language.
Chat History: {chat_history}
Question: {question}
Answer:
"""
daysoff_assistant_prompt= PromptTemplate(
    input_variables=["chat_history", "question"],
    template=daysoff_assistant_template
)

api_url_template = """
Given the following API Documentation for Daysoff's official
booking information API: {api_docs}
Your task is to construct the most efficient API URL to answer
the user's question, ensuring the
call is optimized to include only the necessary information.
Question: {question}
API URL:
"""
api_url_prompt = PromptTemplate(input_variables=['api_docs', 'question'],
                                template=api_url_template)

# (..) If {question} contains an alphanumeric identifier consisting of 6 letters followed by 6 digits (e.g., DAGHNS116478)
api_response_template = """
With the API Documentation for Daysoff's official API: {api_docs} in mind, 
and user question: {question}, and given this API URL: {api_url} for querying, 
here is the response from Daysoff's API: {api_response}.
Please provide an summary that directly addresses the user's question, 
omitting technical details like response format, and 
focusing on delivering the answer with clarity and conciseness, 
as if a human customer service agent is providing this information.
Summary:
"""

api_response_prompt = PromptTemplate(
    input_variables=['api_docs', 'question', 'api_url', 'api_response'],
    template=api_response_template
)

@cl.on_chat_start
def setup_multiple_chains():
    
    llm = HuggingFaceEndpoint(
    repo_id="google/gemma-2-2b-it", #"norallm/normistral-7b-warm-instruct", 
    huggingfacehub_api_token=HUGGINGFACEHUB_API_TOKEN, 
    #max_new_tokens=512,  
    temperature=0.7,     
    task="text-generation"  
    )

    conversation_memory = ConversationBufferMemory(memory_key="chat_history",
                                                   max_len=200,
                                                   return_messages=True,
                                                   )
    llm_chain = LLMChain(llm=llm,
                         prompt=daysoff_assistant_prompt,
                         memory=conversation_memory
                        )

    cl.user_session.set("llm_chain", llm_chain)

    api_chain = APIChain.from_llm_and_api_docs(
        llm=llm,
        api_docs=api_docs_str,
        api_url_prompt=api_url_prompt,
        api_response_prompt=api_response_prompt,
        verbose=True,
        limit_to_domains=["https://670dccd0073307b4ee447f2f.mockapi.io/daysoff/api/V1"]
    )

    cl.user_session.set("api_chain", api_chain)
    

@cl.on_message
async def handle_message(message: cl.Message):
    user_message = message.content.lower()
    llm_chain = cl.user_session.get("llm_chain")
    api_chain = cl.user_session.get("api_chain")

    #if any(keyword in user_message for keyword in ["firmahytteordning","personvernpolicy"]):
    
       
    #def is_booking_query(user_message):
        #match = re.search(r'\b[A-Z]{6}\d{6}\b', user_message)
        #return match is not None  # --works boolean
    #booked = is_booking_query(user_message)
    #if booked: 

    if re.search(r'\b[A-Z]{6}\d{6}\b', user_message):   # ex., "Hei, har du booking info for EQJLCQ362149?"
        logging.debug(f"User message: {user_message}")
        response = await api_chain.acall(user_message, 
                                         callbacks=[cl.AsyncLangchainCallbackHandler()])

    else: 
        response = await llm_chain.acall(user_message,
                                         callbacks=[cl.AsyncLangchainCallbackHandler()])

        logging.debug(f"API response: {response}")

    response_key = "output" if "output" in response else "text"
    await cl.Message(response.get(response_key, "")).send()
    return message.content