Spaces:
Sleeping
Sleeping
File size: 5,308 Bytes
f79e226 f709b40 70ee030 f709b40 d7debf4 f709b40 8318d4c 77d14f7 f709b40 c80f584 f709b40 8318d4c c80f584 f74d64c a699d4a f74d64c 861654a f709b40 f74d64c 861654a f74d64c f709b40 c80f584 f709b40 a699d4a f709b40 c80f584 f709b40 3dffd82 0dc2f2a 47d7912 3dffd82 335fa81 a699d4a 3dffd82 335fa81 f709b40 0dc2f2a f709b40 a699d4a c80f584 5607ea3 c80f584 f709b40 f74d64c f709b40 48c5ac5 f709b40 c80f584 f709b40 2bb026b 0dc2f2a f709b40 a699d4a f709b40 8318d4c f709b40 0975922 c5d3d49 0975922 5607ea3 8318d4c e06eacc f709b40 a699d4a e06eacc f709b40 c80f584 8318d4c f709b40 a699d4a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
### title: 010125-daysoff-assistant-api
### file: app.py
import asyncio
import os
import re
import time
import json
import torch
import logging
from api_docs_mck import api_docs_str
#from daysoff import daysoff_str ## make daysoff.py, put json info in dict.
#from personvernpolicy import personvernpolicy_str ## make personvernpolicy.py, put json info in dict.
import chainlit as cl
from langchain import hub
from langchain.chains import LLMChain, APIChain
from langchain_core.prompts import PromptTemplate
#from langchain_community.llms import HuggingFaceHub
from langchain_huggingface import HuggingFaceEndpoint
from langchain.memory.buffer import ConversationBufferMemory
logging.basicConfig(level=logging.DEBUG)
HUGGINGFACEHUB_API_TOKEN = os.environ.get("HUGGINGFACEHUB_API_TOKEN")
BOOKING_ID = re.compile(r'\b[A-Z]{6}\d{6}\b')
BOOKING_KEYWORDS = [
"booking",
"bestillingsnummer",
"bookingen",
"ordrenummer",
"reservation",
"rezerwacji",
"bookingreferanse",
"rezerwacja",
"booket",
"reservation number",
"bestilling",
"order number",
"booking ID",
"identyfikacyjny pลatnoลci"
]
daysoff_assistant_template = """
You are a customer support assistant for Daysoff named "Agrippa". Your expertise is in retrieving
booking details for a given booking ID and answering questions about
Daysoff's personvernspolicy and firmahytteordning. You do not provide information outside of this
scope. By default, you respond in Norwegian language.
Chat History: {chat_history}
Question: {question}
Answer:
"""
daysoff_assistant_prompt= PromptTemplate(
input_variables=["chat_history", "question"],
template=daysoff_assistant_template
)
api_url_template = """
Given the following API Documentation for Daysoff's official
booking information API: {api_docs}
Your task is to construct the most efficient API URL to answer
the user's question, ensuring the
call is optimized to include only the necessary information.
Question: {question}
API URL:
"""
api_url_prompt = PromptTemplate(input_variables=['api_docs', 'question'],
template=api_url_template)
# (..) If {question} contains an alphanumeric identifier consisting of 6 letters followed by 6 digits (e.g., DAGHNS116478)
api_response_template = """
With the API Documentation for Daysoff's official API: {api_docs} in mind,
and user question: {question}, and given this API URL: {api_url} for querying,
here is the response from Daysoff's API: {api_response}.
Please provide an summary that directly addresses the user's question,
omitting technical details like response format, and
focusing on delivering the answer with clarity and conciseness,
as if a human customer service agent is providing this information.
Summary:
"""
api_response_prompt = PromptTemplate(
input_variables=['api_docs', 'question', 'api_url', 'api_response'],
template=api_response_template
)
@cl.on_chat_start
def setup_multiple_chains():
llm = HuggingFaceEndpoint(
repo_id="google/gemma-2-2b-it", #"norallm/normistral-7b-warm-instruct",
huggingfacehub_api_token=HUGGINGFACEHUB_API_TOKEN,
#max_new_tokens=512,
temperature=0.7,
task="text-generation"
)
conversation_memory = ConversationBufferMemory(memory_key="chat_history",
max_len=200,
return_messages=True,
)
llm_chain = LLMChain(llm=llm,
prompt=daysoff_assistant_prompt,
memory=conversation_memory
)
cl.user_session.set("llm_chain", llm_chain)
api_chain = APIChain.from_llm_and_api_docs(
llm=llm,
api_docs=api_docs_str,
api_url_prompt=api_url_prompt,
api_response_prompt=api_response_prompt,
verbose=True,
limit_to_domains=["https://670dccd0073307b4ee447f2f.mockapi.io/daysoff/api/V1"]
)
cl.user_session.set("api_chain", api_chain)
@cl.on_message
async def handle_message(message: cl.Message):
user_message = message.content.lower()
llm_chain = cl.user_session.get("llm_chain")
api_chain = cl.user_session.get("api_chain")
#if any(keyword in user_message for keyword in ["firmahytteordning","personvernpolicy"]):
#def is_booking_query(user_message):
#match = re.search(r'\b[A-Z]{6}\d{6}\b', user_message)
#return match is not None # --works boolean
#booked = is_booking_query(user_message)
#if booked:
if re.search(r'\b[A-Z]{6}\d{6}\b', user_message): # ex., "Hei, har du booking info for EQJLCQ362149?"
logging.debug(f"User message: {user_message}")
response = await api_chain.acall(user_message,
callbacks=[cl.AsyncLangchainCallbackHandler()])
else:
response = await llm_chain.acall(user_message,
callbacks=[cl.AsyncLangchainCallbackHandler()])
logging.debug(f"API response: {response}")
response_key = "output" if "output" in response else "text"
await cl.Message(response.get(response_key, "")).send()
return message.content
|