File size: 4,592 Bytes
f79e226
 
f709b40
70ee030
f709b40
d7debf4
f709b40
 
 
 
c80f584
f709b40
 
 
 
 
 
c80f584
 
f709b40
 
c80f584
 
 
f709b40
 
8a1fb2d
f709b40
 
 
 
 
 
 
 
 
 
 
c80f584
f709b40
 
 
 
 
c80f584
f709b40
 
 
c80f584
f709b40
48c5ac5
 
8a1fb2d
f709b40
 
 
8a1fb2d
f709b40
c80f584
 
48c5ac5
 
f709b40
 
 
 
c80f584
 
 
 
 
 
 
 
 
 
f709b40
 
 
 
 
 
 
 
 
 
 
48c5ac5
f709b40
c80f584
f709b40
 
 
 
 
 
 
c80f584
f709b40
a4fe116
28418e7
 
 
 
 
c80f584
 
 
 
 
28418e7
c80f584
28418e7
 
c80f584
a4fe116
 
f709b40
 
 
 
 
 
a4fe116
31af47b
a4fe116
 
31af47b
62041d1
a4fe116
f709b40
 
 
 
 
c80f584
f709b40
 
5e7e4bb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
### title: 010125-daysoff-assistant-api
### file: app.py

import asyncio
import os
import re
import time
import json
import torch

from api_docs_mck import api_docs_str

import chainlit as cl

from langchain import hub
from langchain.chains import LLMChain, APIChain
from langchain_core.prompts import PromptTemplate
#from langchain_community.llms import HuggingFaceHub
from langchain_huggingface import HuggingFaceEndpoint
from langchain.memory.buffer import ConversationBufferMemory


HUGGINGFACEHUB_API_TOKEN = os.environ.get("HUGGINGFACEHUB_API_TOKEN")

daysoff_assistant_booking_template = """
You are a customer support assistant for Daysoff.no. Your expertise is
retrieving booking information for a given booking ID."
Chat History: {chat_history}
Question: {question}
Answer:
"""
daysoff_assistant_booking_prompt= PromptTemplate(
    input_variables=["chat_history", "question"],
    template=daysoff_assistant_booking_template
)

api_url_template = """
Given the following API Documentation for Daysoff's official
booking information API: {api_docs}
Your task is to construct the most efficient API URL to answer
the user's question, ensuring the
call is optimized to include only the necessary information.
Question: {question}
"""
api_url_prompt = PromptTemplate(input_variables=['api_docs', 'question'],
                                template=api_url_template)

api_response_template = """"
With the API Documentation for Daysoff's official API: {api_docs}
and the specific user question: {question} in mind,
and given this API URL: {base_url} for querying, here is the
response from Daysoff's API: {response}.
Please provide user with their booking information,
focusing on delivering the answer with clarity and conciseness,
as if a human customer service agent is providing this information.
Adapt to user's language. By default, you speak Norwegian.
Booking information:
"""
api_response_prompt = PromptTemplate(input_variables=['question',
                                                      'api_docs',
                                                      'base_url',
                                                      'response'],
                                     template=api_response_template)

@cl.on_chat_start
def setup_multiple_chains():
    #llm = HuggingFaceEndpoint(repo_id="google/gemma-2-2b-it")

    llm = HuggingFaceEndpoint(
    repo_id="google/gemma-2-2b-it", 
    huggingfacehub_api_token=HUGGINGFACEHUB_API_TOKEN, 
    #max_new_tokens=512,  
    temperature=0.7,     
    task="text-generation"  
    )

    conversation_memory = ConversationBufferMemory(memory_key="chat_history",
                                                   max_len=200,
                                                   return_messages=True,
                                                   )
    llm_chain = LLMChain(llm=llm,
                         prompt=daysoff_assistant_booking_prompt,
                         memory=conversation_memory
                        )

    cl.user_session.set("llm_chain", llm_chain)

    api_chain = APIChain.from_llm_and_api_docs(
        llm=llm,
        api_docs=api_docs_str,
        api_url_prompt=api_url_prompt,
        api_response_prompt=api_response_prompt,
        verbose=True,
        limit_to_domains=None)

    cl.user_session.set("api_chain", api_chain)

BOOKING_ID = r'\b[A-Z]{6}\d{6}\b'

BOOKING_KEYWORDS = [
    "booking",
    "bestillingsnummer",
    "bookingen",
    "ordrenummer",
    "reservation",
    "rezerwacji",
    "bookingreferanse",
    "rezerwacja",
    "logg inn",
    "booket",
    "reservation number",
    "bestilling",
    "order number",
    "booking ID",
    "identyfikacyjny pล‚atnoล›ci"
]

@cl.on_message
async def handle_message(message: cl.Message):
    user_message = message.content.lower()
    llm_chain = cl.user_session.get("llm_chain")
    api_chain = cl.user_session.get("api_chain")

    is_booking_query = any(
        re.search(keyword, user_message, re.IGNORECASE) # re.search(keyword, r'\b[A-Z]{6}\d{6}\b', user_message, re.IGNORECASE)
        for keyword in BOOKING_KEYWORDS + [BOOKING_ID]
    )


    if is_booking_query:
        response = await api_chain.acall(user_message,
                                         callbacks=[cl.AsyncLangchainCallbackHandler()])
    else:
        response = await llm_chain.acall(user_message,
                                         callbacks=[cl.AsyncLangchainCallbackHandler()])

    response_key = "output" if "output" in response else "text"
    await cl.Message(response.get(response_key, "")).send()
    return message.content