Spaces:
Sleeping
Sleeping
File size: 4,681 Bytes
f79e226 f709b40 70ee030 f709b40 d7debf4 f709b40 c80f584 f709b40 c80f584 f709b40 c80f584 a699d4a c80f584 e06eacc a699d4a e06eacc f709b40 e06eacc f709b40 e06eacc f709b40 c80f584 f709b40 a699d4a f709b40 c80f584 f709b40 0dc2f2a e06eacc 0dc2f2a e06eacc a699d4a e06eacc f709b40 0dc2f2a f709b40 a699d4a c80f584 f709b40 48c5ac5 f709b40 c80f584 f709b40 0dc2f2a f709b40 a699d4a f709b40 e06eacc f709b40 e06eacc a699d4a e06eacc 62041d1 e06eacc f709b40 a699d4a e06eacc f709b40 c80f584 f709b40 a699d4a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
### title: 010125-daysoff-assistant-api
### file: app.py
import asyncio
import os
import re
import time
import json
import torch
from api_docs_mck import api_docs_str
import chainlit as cl
from langchain import hub
from langchain.chains import LLMChain, APIChain
from langchain_core.prompts import PromptTemplate
#from langchain_community.llms import HuggingFaceHub
from langchain_huggingface import HuggingFaceEndpoint
from langchain.memory.buffer import ConversationBufferMemory
HUGGINGFACEHUB_API_TOKEN = os.environ.get("HUGGINGFACEHUB_API_TOKEN")
BOOKING_ID = r'\b[A-Z]{6}\d{6}\b'
BOOKING_KEYWORDS = [
"booking",
"bestillingsnummer",
"bookingen",
"ordrenummer",
"reservation",
"rezerwacji",
"bookingreferanse",
"rezerwacja",
"booket",
"reservation number",
"bestilling",
"order number",
"booking ID",
"identyfikacyjny pลatnoลci"
]
daysoff_assistant_system_template = """
You are an AI customer support assistant for Daysoff. By default,
you respond in Norwegian to {question}. In all other cases,
adapt to user's language and respond accordingly.
You can retrieving booking information for a given booking ID. In addition,
you can inform on Daysoff's personvernspolicy and verticals."
Chat History: {chat_history}
Question: {question}
Answer:
"""
daysoff_assistant_system_prompt= PromptTemplate(
input_variables=["chat_history", "question"],
template=daysoff_assistant_system_template
)
api_url_template = """
Given the following API Documentation for Daysoff's official
booking information API: {api_docs}
Your task is to construct the most efficient API URL to answer
the user's question, ensuring the
call is optimized to include only the necessary information.
Question: {question}
API URL:
"""
api_url_prompt = PromptTemplate(input_variables=['api_docs', 'question'],
template=api_url_template)
api_response_template = """
IF and only IF {question} contains alphanumeric identifier:{BOOKING_ID},
with the API Documentation for Daysoff's official API: {api_docs}
in mind, and given this API URL: {api_url} for querying, here is the
response from Daysoff's API: {api_response}.
Please provide only information that directly addresses the user's question,
omitting technical details like response format, and
focusing on delivering the answer with clarity and conciseness,
as if Daysoff's human customer service agent is providing this information themselves.
Her er informasjon om bestilligen:
"""
api_response_prompt = PromptTemplate(
input_variables=['api_docs', 'question', 'api_url', 'api_response'],
template=api_response_template
)
@cl.on_chat_start
def setup_multiple_chains():
llm = HuggingFaceEndpoint(
repo_id="google/gemma-2-2b-it",
huggingfacehub_api_token=HUGGINGFACEHUB_API_TOKEN,
#max_new_tokens=512,
temperature=0.7,
task="text-generation"
)
conversation_memory = ConversationBufferMemory(memory_key="chat_history",
max_len=200,
return_messages=True,
)
llm_chain = LLMChain(llm=llm,
prompt=daysoff_assistant_booking_prompt,
memory=conversation_memory
)
cl.user_session.set("llm_chain", llm_chain)
api_chain = APIChain.from_llm_and_api_docs(
llm=llm,
api_docs=api_docs_str,
api_url_prompt=api_url_prompt,
api_response_prompt=api_response_prompt,
verbose=True,
limit_to_domains=None
)
cl.user_session.set("api_chain", api_chain)
@cl.on_message
async def handle_message(message: cl.Message):
user_message = message.content.lower()
llm_chain = cl.user_session.get("llm_chain")
api_chain = cl.user_session.get("api_chain")
def is_booking_query(user_message):
match = re.search(r'\b[A-Z]{6}\d{6}\b', user_message)
return match
if match:
response = await api_chain.acall(user_message,
callbacks=[cl.AsyncLangchainCallbackHandler()])
else:
response = await llm_chain.acall(user_message,
callbacks=[cl.AsyncLangchainCallbackHandler()])
response_key = "output" if "output" in response else "text"
await cl.Message(response.get(response_key, "")).send()
return message.content
# await cl.Message(response.get(response_key, "")).send()
# content=f"Her er informasjonen for bestillingsnummer {booking_id}:\n{booking_info}").send() |