camparchimedes's picture
Update app.py
4313ed0 verified
raw
history blame
4.55 kB
# ---------------------------------------------------for backend looks-------------------------------------------------
#with open('/usr/local/lib/python3.10/site-packages/transformers/utils/chat_template_utils.py', 'r') as file:
#content = file.read()
#print("base.py:", content)
# ------------------------------------------------------the end--------------------------------------------------------
# ===========================================
# !-----app.py
# ===========================================
import json
import asyncio
import os
import re
import requests
from dotenv import load_dotenv
import chainlit as cl
from langchain import hub
from langchain_openai import OpenAI
from langchain.chains import LLMChain
from langchain_core.prompts import PromptTemplate
from langchain.memory.buffer import ConversationBufferMemory
load_dotenv()
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
auth_token = os.environ.get("CHAINLIT_AUTH_SECRET")
# API endpoint
API_URL = "https://aivisions.no/data/daysoff/api/v1/booking/"
# LLM prompt template
daysoff_assistant_template = """
#You are a customer support assistant (โ€™kundeservice AI assistentโ€™) for Daysoff.
#By default, you respond in Norwegian language, using a warm, direct, and professional tone.
Your expertise is exclusively in retrieving booking information for a given booking ID assistance related to
to this.
You do not provide information outside of this scope. If a question is not about this topic, respond with
"Jeg driver faktisk kun med henvendelser omkring bestillingsinformasjon. Gjelder det andre henvendelser
mรฅ du nok kontakte kundeservice pรฅ [email protected]๐Ÿ˜Š"
"""
daysoff_assistant_prompt = PromptTemplate(
input_variables=["chat_history", "question"],
template=daysoff_assistant_template,
)
# Async wrapper for requests.post
async def async_post_request(url, headers, data):
return await asyncio.to_thread(requests.post, url, headers=headers, json=data)
@cl.on_chat_start
def setup_multiple_chains():
llm = OpenAI(
model="gpt-3.5-turbo-instruct",
temperature=0.7,
openai_api_key=OPENAI_API_KEY,
max_tokens=2048,
top_p=0.9,
frequency_penalty=0.1,
presence_penalty=0.1,
)
conversation_memory = ConversationBufferMemory(
memory_key="chat_history", max_len=30, return_messages=True
)
llm_chain = LLMChain(
llm=llm,
prompt=daysoff_assistant_prompt,
memory=conversation_memory,
)
cl.user_session.set("llm_chain", llm_chain)
@cl.on_message
async def handle_message(message: cl.Message):
user_message = message.content
llm_chain = cl.user_session.get("llm_chain")
booking_pattern = r'\b[A-Z]{6}\d{6}\b'
match = re.search(booking_pattern, user_message)
if match:
bestillingskode = match.group()
headers = {
"Authorization": auth_token,
"Content-Type": "application/json"
}
payload = {"booking_id": bestillingskode}
try:
response = await async_post_request(API_URL, headers, payload)
response.raise_for_status()
booking_data = response.json()
if "booking_id" in booking_data:
await cl.Message(
content=f"""
Booking Info:
- Booking ID: {booking_data.get('booking_id', 'N/A')}
- Full Name: {booking_data.get('full_name', 'N/A')}
- Amount: {booking_data.get('amount', 0)}
- Check-in: {booking_data.get('checkin', 'N/A')}
- Check-out: {booking_data.get('checkout', 'N/A')}
- Address: {booking_data.get('address', 'N/A')}
- User ID: {booking_data.get('user_id', 0)}
- Info Text: {booking_data.get('infotext', 'N/A')}
- Included: {booking_data.get('included', 'N/A')}
"""
).send()
else:
await cl.Message(content="Booking not found or invalid response.").send()
except requests.exceptions.RequestException as e:
await cl.Message(content=f"Request failed: {str(e)}").send()
else:
response = await llm_chain.ainvoke(user_message, callbacks=[cl.AsyncLangchainCallbackHandler()])
response_key = "output" if "output" in response else "text"
await cl.Message(response.get(response_key, "")).send()
return message.content