Spaces:
Sleeping
Sleeping
# =========================================== | |
# ver01.01-5.workload-----app.py | |
# =========================================== | |
import asyncio | |
import os | |
import re | |
import time | |
import json | |
import chainlit as cl | |
from langchain import hub | |
from langchain_openai import OpenAI | |
from langchain.chains import LLMChain, APIChain | |
from langchain_core.prompts import PromptTemplate | |
from langchain.memory.buffer import ConversationBufferMemory | |
from api_docs_mck import api_docs_str | |
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY") | |
FAQ_ANSATTE = [ | |
"Hvordan registrerer jeg meg som bruker?", | |
"Når får jeg leieinstruks for min bestilling? Informasjon om nøkler etc.?", | |
"Det står barneseng og barnestol under fasiliteter, må dette forhåndsbestilles?", | |
"Kan jeg ta med hund eller katt?", | |
"Jeg har lagt inn en bestilling hva skjer videre?", | |
"Jeg har bestilt firmahytte, men kan ikke reise. Kan jeg endre navn på bestillingen til min kollega eller familiemedlem som vil reise i stedet for meg?", | |
"Kan jeg avbestille min reservasjon?", | |
"Jeg har bestilt utvask. Hva må jeg gjøre i tillegg til dette?", | |
"Jeg er medlem og eier en hytte! Kan jeg bli utleier i DaysOff?", | |
"Bestille opphold?" | |
] | |
FAQ_UTLEIERE = [ | |
"Hva er betingelser for utleie?", | |
"Hvor lang tid har jeg på å bekrefte en bestilling?", | |
"Hvilke kanselleringsregler gjelder?", | |
"Hvem er kundene deres?", | |
"Kan jeg legge inn rabatterte priser for å lage egne kampanjer?", | |
"Når mottar jeg betaling for leie?", | |
"Jeg fikk en e-post om ny bestilling, men jeg finner den ikke i systemet?", | |
"Hvordan registrerer jeg opptatte perioder i kalenderen?", | |
"Jeg leier ut i andre kanaler. Hvordan kan jeg synkronisere kalenderne?" | |
] | |
PERSONVERNSPOLICY_QUESTIONS = [ | |
"Hvilke personlige opplysninger samler vi inn?", | |
"Kan dere motta personlig informasjon fra tredjepart?", | |
"Hvordan bruker vi dine personlige opplysninger?", | |
"Med hvem deler vi dine personlige opplysninger?", | |
"Adferdsmessig annonsering?", | |
"Hvordan reagerer vi på « Spor ikke » forespørsler?", | |
"Hva er dine rettigheter?", | |
"Hvordan beskytter vi dataene dine?", | |
"Hvilke data brudd prosedyrer har vi på plass?", | |
"Hvem i vårt team har tilgang til dine data?", | |
"Endringer i denne policyen" | |
] | |
daysoff_assistant_template = """ | |
You are a customer support assistant (’kundeservice AI assistent’) for Daysoff.no | |
By default, you respond in Norwegian language, using a warm, direct and professional tone. | |
You are equipped to assist users by providing detailed information linked to specific | |
booking IDs (bestillingskode), offering general insights about DaysOff's services, addressing | |
questions related to the company's privacy policy (personvernspolicy), and answering frequently | |
asked questions about DaysOff's firmahytteordning. | |
Chat History: {chat_history} | |
Question: {question} | |
Answer: | |
""" | |
daysoff_assistant_prompt = PromptTemplate( | |
input_variables=['chat_history', 'question'], | |
template=daysoff_assistant_template | |
) | |
api_url_template = """ | |
Given the following API Documentation for Daysoff's official | |
booking information API: {api_docs} | |
Your task is to construct the most efficient API URL to answer | |
the user's question, ensuring the | |
call is optimized to include only the necessary information. | |
Question: {question} | |
API URL: | |
""" | |
api_url_prompt = PromptTemplate(input_variables=['api_docs', 'question'], | |
template=api_url_template) | |
api_response_template = """ | |
With the API Documentation for Daysoff's official API: {api_docs} in mind, | |
and the specific user question: {question}, | |
and given this API URL: {api_url} for querying, | |
here is the response from Daysoff's API: {api_response}. | |
If the response includes a booking ID (bestillingskode), present this information directly to the user without summarizing it. | |
For all other responses, please provide a clear and concise summary (in Norwegian) that directly addresses the user's question, | |
delivered in a manner that reflects the professionalism and warmth of a human customer service agent. | |
Summary: | |
""" | |
api_response_prompt = PromptTemplate( | |
input_variables=['api_docs', 'question', 'api_url', 'api_response'], | |
template=api_response_template | |
) | |
def setup_multiple_chains(): | |
llm = OpenAI( | |
model='gpt-3.5-turbo-instruct', | |
temperature=0.7, | |
openai_api_key=OPENAI_API_KEY, | |
#max_tokens=512, | |
top_p=0.9, | |
frequency_penalty=0.5, | |
presence_penalty=0.3 | |
) | |
conversation_memory = ConversationBufferMemory(memory_key="chat_history", | |
max_len=300, | |
return_messages=True, | |
) | |
llm_chain = LLMChain(llm=llm, | |
prompt=daysoff_assistant_prompt, | |
memory=conversation_memory | |
) | |
cl.user_session.set("llm_chain", llm_chain) | |
api_chain = APIChain.from_llm_and_api_docs( | |
llm=llm, | |
api_docs=api_docs_str, | |
api_url_prompt=api_url_prompt, | |
api_response_prompt=api_response_prompt, | |
verbose=True, | |
limit_to_domains=None | |
) | |
cl.user_session.set("api_chain", api_chain) | |
async def handle_message(message: cl.Message): | |
user_message = message.content #.lower() | |
llm_chain = cl.user_session.get("llm_chain") | |
api_chain = cl.user_session.get("api_chain") | |
booking_pattern = r'\b[A-Z]{6}\d{6}\b' | |
base_url = "https://670dccd0073307b4ee447f2f.mockapi.io/daysoff/api/V1/booking" | |
if re.search(booking_pattern, user_message): | |
bestillingskode = re.search(booking_pattern, user_message).group(0) | |
question = f"Retrieve information for booking ID {base_url}?search={bestillingskode}" | |
response = await api_chain.acall( | |
{ | |
"bestillingskode": bestillingskode, | |
"question": question | |
}, | |
callbacks=[cl.AsyncLangchainCallbackHandler()]) | |
elif any(keyword in user_message for keyword in (FAQ_ANSATTE + PERSONVERNSPOLICY_QUESTIONS + FAQ_UTLEIERE)): | |
response = await api_chain.acall(user_message, | |
callbacks=[cl.AsyncLangchainCallbackHandler()]) | |
else: | |
response = await llm_chain.acall(user_message, callbacks=[cl.AsyncLangchainCallbackHandler()]) | |
response_key = "output" if "output" in response else "text" | |
await cl.Message(response.get(response_key, "")).send() | |
return message.content | |