Spaces:
Sleeping
Sleeping
# =========================================== | |
# ver2-----app.py | |
# =========================================== | |
import asyncio | |
import os | |
import re | |
import time | |
import json | |
import torch | |
import logging | |
from api_docs_mck import api_docs_str | |
import chainlit as cl | |
from langchain import hub | |
from langchain.chains import LLMChain, APIChain | |
from langchain_core.prompts import PromptTemplate | |
from langchain.memory.buffer import ConversationBufferMemory | |
from langchain_openai import OpenAI | |
from langchain_community.llms import HuggingFaceHub | |
from langchain_huggingface import HuggingFacePipeline | |
from langchain_huggingface import HuggingFaceEndpoint | |
from langchain_core.callbacks.streaming_stdout import StreamingStdOutCallbackHandler | |
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY") | |
#HF_INFERENCE_ENDPOINT = | |
#BOOKING_ID = re.compile(r'\b[A-Z]{6}\d{6}\b') | |
#HUGGINGFACEHUB_API_TOKEN = os.environ.get("HUGGINGFACEHUB_API_TOKEN") | |
BOOKING_KEYWORDS = [ | |
"booking", | |
"bestillingsnummer", | |
"bookingen", | |
"ordrenummer", | |
"reservation", | |
"rezerwacji", | |
"bookingreferanse", | |
"rezerwacja", | |
"booket", | |
"reservation number", | |
"bestilling", | |
"order number", | |
"booking ID", | |
"identyfikacyjny płatności" | |
] | |
daysoff_assistant_template = """ | |
You are a customer support assistant (’kundeservice AI assistent’) for Daysoff.no | |
By default, you respond in Norwegian language, using a warm, direct and professional tone. | |
Your expertise is exclusively in in providing information related to a given booking ID (’bestillingsnummer’) | |
and booking-related queries such as firmahytteordning and personvernspolicy. | |
You do not provide information outside of this scope. If a question is not about booking or booking-related queries, | |
respond with, "Ønsker du annen informasjon, må du kontakte oss her på [email protected]" | |
Chat History: {chat_history} | |
Question: {question} | |
Answer: | |
""" | |
daysoff_assistant_prompt= PromptTemplate( | |
input_variables=["chat_history", "question"], | |
template=daysoff_assistant_template | |
) | |
api_url_template = """ | |
Given the following API Documentation for Daysoff's official | |
booking information API: {api_docs} | |
Your task is to construct the most efficient API URL to answer | |
the user's question, ensuring the | |
call is optimized to include only the necessary information. | |
Question: {question} | |
API URL: | |
""" | |
api_url_prompt = PromptTemplate(input_variables=['api_docs', 'question'], | |
template=api_url_template) | |
# (..) If {question} contains an alphanumeric identifier consisting of 6 letters followed by 6 digits (e.g., DAGHNS116478) | |
api_response_template = """ | |
With the API Documentation for Daysoff's official API: {api_docs} in mind, | |
and the specific user question: {question} in mind, | |
and given this API URL: {api_url} for querying, | |
here is the response from Daysoff's API: {api_response}. | |
Please provide an summary (in Norwegian) that directly addresses the user's question, | |
omitting technical details like response format, and | |
focusing on delivering the answer with clarity and conciseness, | |
as if a human customer service agent is providing this information. | |
Summary: | |
""" | |
api_response_prompt = PromptTemplate( | |
input_variables=['api_docs', 'question', 'api_url', 'api_response'], | |
template=api_response_template | |
) | |
def setup_multiple_chains(): | |
llm = OpenAI( | |
model='gpt-3.5-turbo-instruct', | |
temperature=0.7, | |
openai_api_key=OPENAI_API_KEY, | |
#max_tokens=512, | |
top_p=0.9, | |
frequency_penalty=0.5, | |
presence_penalty=0.3 | |
) | |
conversation_memory = ConversationBufferMemory(memory_key="chat_history", | |
max_len=300, | |
return_messages=True, | |
) | |
llm_chain = LLMChain(llm=llm, | |
prompt=daysoff_assistant_prompt, | |
memory=conversation_memory | |
) | |
cl.user_session.set("llm_chain", llm_chain) | |
api_chain = APIChain.from_llm_and_api_docs( | |
llm=llm, | |
api_docs=api_docs_str, | |
api_url_prompt=api_url_prompt, | |
api_response_prompt=api_response_prompt, | |
verbose=True, | |
limit_to_domains=None | |
) | |
cl.user_session.set("api_chain", api_chain) | |
async def handle_message(message: cl.Message): | |
user_message = message.content | |
llm_chain = cl.user_session.get("llm_chain") | |
api_chain = cl.user_session.get("api_chain") | |
booking_pattern = r'\b[A-Z]{6}\d{6}\b' | |
base_url = "https://670dccd0073307b4ee447f2f.mockapi.io/daysoff/api/V1/booking" | |
if re.search(booking_pattern, user_message): | |
booking_id = re.search(booking_pattern, user_message).group(0) | |
question = f"Retrieve information for booking ID {booking_id}" | |
url = f"{base_url}?search={booking_id}" | |
response = await api_chain.acall( | |
{ | |
"booking_id": booking_id, | |
"question": question, | |
"url": url | |
}, | |
callbacks=[cl.AsyncLangchainCallbackHandler()]) | |
else: | |
##await cl.Message("Vi kan desverre ikke finne noen informasjon for det oppgitte bookingnummeret.").send() | |
#response = await api_chain.acall({"booking_id": booking_id}, callbacks=[cl.AsyncLangchainCallbackHandler()]) | |
response = await llm_chain.acall(user_message, callbacks=[cl.AsyncLangchainCallbackHandler()]) | |
response_key = "output" if "output" in response else "text" | |
await cl.Message(response.get(response_key, "")).send() | |
return message.content | |