Spaces:
Sleeping
Sleeping
Delete str-has-no-attribute-get-app.py
Browse files- str-has-no-attribute-get-app.py +0 -218
str-has-no-attribute-get-app.py
DELETED
@@ -1,218 +0,0 @@
|
|
1 |
-
# ===================================================
|
2 |
-
# "the-very-latest-latest-POST-it"-----app.py
|
3 |
-
# ===================================================
|
4 |
-
|
5 |
-
import asyncio
|
6 |
-
import os
|
7 |
-
import re
|
8 |
-
import time
|
9 |
-
import json
|
10 |
-
|
11 |
-
import chainlit as cl
|
12 |
-
from dotenv import load_dotenv
|
13 |
-
|
14 |
-
from pydantic import BaseModel, PrivateAttr
|
15 |
-
|
16 |
-
from langchain import hub
|
17 |
-
from langchain_openai import OpenAI
|
18 |
-
from tiktoken import encoding_for_model
|
19 |
-
from langchain.chains import LLMChain #APIChain
|
20 |
-
from langchain_core.prompts import PromptTemplate
|
21 |
-
|
22 |
-
from langchain_community.tools.requests.tool import RequestsPostTool
|
23 |
-
from langchain_community.utilities.requests import TextRequestsWrapper
|
24 |
-
|
25 |
-
from langchain.memory.buffer import ConversationBufferMemory
|
26 |
-
from langchain.memory import ConversationTokenBufferMemory
|
27 |
-
from langchain.memory import ConversationSummaryMemory
|
28 |
-
|
29 |
-
from api_docs import api_docs_str
|
30 |
-
|
31 |
-
load_dotenv()
|
32 |
-
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")
|
33 |
-
auth_token = os.getenv("DAYSOFF_API_TOKEN")
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
class EnhancedRequestsPostTool(RequestsPostTool, BaseModel):
|
38 |
-
api_docs: str = api_docs_str
|
39 |
-
|
40 |
-
# --PrivateAttr@dynanmc init attrbts
|
41 |
-
_url_chain: LLMChain = PrivateAttr()
|
42 |
-
_response_chain: LLMChain = PrivateAttr()
|
43 |
-
|
44 |
-
def __init__(self, requests_wrapper, llm, api_docs_str, api_url_prompt, api_response_prompt):
|
45 |
-
super().__init__(requests_wrapper=requests_wrapper, allow_dangerous_requests=True)
|
46 |
-
object.__setattr__(self, 'api_docs', api_docs_str) # self.api_docs = api_docs_str
|
47 |
-
object.__setattr__(self, 'url_chain', LLMChain(llm=llm, prompt=api_url_prompt)) # --dynanmc init1
|
48 |
-
object.__setattr__(self, 'response_chain', LLMChain(llm=llm, prompt=api_response_prompt)) # --dynanmc init2
|
49 |
-
|
50 |
-
async def ainvoke(self, input_data, callbacks=None):
|
51 |
-
# -- create API URL
|
52 |
-
url_response = await self.url_chain.ainvoke({
|
53 |
-
"api_docs": self.api_docs,
|
54 |
-
"question": input_data.get("question")
|
55 |
-
})
|
56 |
-
|
57 |
-
api_response = await super().ainvoke(input_data, callbacks) # --make POST request
|
58 |
-
|
59 |
-
# --form(at) response/:response_chain
|
60 |
-
formatted_response = await self.response_chain.ainvoke({
|
61 |
-
"api_docs": self.api_docs,
|
62 |
-
#"question": input_data.get("question"),
|
63 |
-
#"api_url": url_response.get("text"),
|
64 |
-
"api_response": api_response
|
65 |
-
})
|
66 |
-
|
67 |
-
return formatted_response
|
68 |
-
|
69 |
-
daysoff_assistant_template = """
|
70 |
-
#You are a customer support assistant (โkundeservice AI assistentโ) for Daysoff.
|
71 |
-
#By default, you respond in Norwegian language, using a warm, direct, and professional tone.
|
72 |
-
Your expertise is exclusively in retrieving booking information for a given booking ID assistance related to
|
73 |
-
to this.
|
74 |
-
You do not provide information outside of this scope. If a question is not about this topic, respond with
|
75 |
-
"Jeg driver faktisk kun med henvendelser omkring bestillingsinformasjon. Gjelder det andre henvendelser
|
76 |
-
mรฅ du nok kontakte kundeservice pรฅ [email protected]๐"
|
77 |
-
Chat History: {chat_history}
|
78 |
-
Question: {question}
|
79 |
-
Answer:
|
80 |
-
"""
|
81 |
-
daysoff_assistant_prompt = PromptTemplate(
|
82 |
-
input_variables=['chat_history', 'question'],
|
83 |
-
template=daysoff_assistant_template
|
84 |
-
)
|
85 |
-
|
86 |
-
api_url_template = """
|
87 |
-
Given the following API Documentation for Daysoff's official
|
88 |
-
booking information API: {api_docs}
|
89 |
-
Your task is to construct the most efficient API URL to answer
|
90 |
-
the user's question, ensuring the
|
91 |
-
call is optimized to include only the necessary information.
|
92 |
-
Question: {question}
|
93 |
-
API URL:
|
94 |
-
"""
|
95 |
-
api_url_prompt = PromptTemplate(input_variables=['api_docs', 'question'],
|
96 |
-
template=api_url_template)
|
97 |
-
|
98 |
-
api_response_template = """
|
99 |
-
With the API Documentation for Daysoff's official API: {api_docs} in mind,
|
100 |
-
and the specific user question: {question},
|
101 |
-
and given this API URL: {api_url} for querying,
|
102 |
-
and response from Daysoff's API: {api_response},
|
103 |
-
never refer the user to the API URL as your answer!
|
104 |
-
You should always provide a clear and concise summary (in Norwegian) of the booking information retrieved.
|
105 |
-
This way you directly address the user's question in a manner that reflects the professionalism and warmth
|
106 |
-
of a human customer service agent.
|
107 |
-
Summary:
|
108 |
-
"""
|
109 |
-
api_response_prompt = PromptTemplate(
|
110 |
-
input_variables=['api_docs', 'question', 'api_url', 'api_response'],
|
111 |
-
template=api_response_template
|
112 |
-
)
|
113 |
-
|
114 |
-
|
115 |
-
@cl.on_chat_start
|
116 |
-
def setup_multiple_chains():
|
117 |
-
llm = OpenAI(
|
118 |
-
model='gpt-3.5-turbo-instruct',
|
119 |
-
temperature=0.7,
|
120 |
-
openai_api_key=OPENAI_API_KEY,
|
121 |
-
max_tokens=2048,
|
122 |
-
top_p=0.9,
|
123 |
-
frequency_penalty=0.1,
|
124 |
-
presence_penalty=0.1
|
125 |
-
)
|
126 |
-
|
127 |
-
conversation_memory = ConversationBufferMemory(memory_key="chat_history",
|
128 |
-
max_len=30,
|
129 |
-
return_messages=True,
|
130 |
-
)
|
131 |
-
|
132 |
-
llm_chain = LLMChain(
|
133 |
-
llm=llm,
|
134 |
-
prompt=daysoff_assistant_prompt,
|
135 |
-
memory=conversation_memory,
|
136 |
-
)
|
137 |
-
|
138 |
-
requests_wrapper = TextRequestsWrapper(
|
139 |
-
headers={
|
140 |
-
"Authorization": f"Bearer <auth_token>",
|
141 |
-
"Content-Type": "application/json"
|
142 |
-
}
|
143 |
-
)
|
144 |
-
|
145 |
-
post_tool = EnhancedRequestsPostTool(
|
146 |
-
requests_wrapper=requests_wrapper,
|
147 |
-
llm=llm,
|
148 |
-
api_docs_str=api_docs_str,
|
149 |
-
api_url_prompt=api_url_prompt,
|
150 |
-
api_response_prompt=api_response_prompt
|
151 |
-
)
|
152 |
-
|
153 |
-
cl.user_session.set("llm_chain", llm_chain)
|
154 |
-
cl.user_session.set("post_tool", post_tool)
|
155 |
-
|
156 |
-
|
157 |
-
@cl.on_message
|
158 |
-
async def handle_message(message: cl.Message):
|
159 |
-
user_message = message.content
|
160 |
-
llm_chain = cl.user_session.get("llm_chain")
|
161 |
-
post_tool = cl.user_session.get("post_tool")
|
162 |
-
|
163 |
-
booking_pattern = r'\b[A-Z]{6}\d{6}\b'
|
164 |
-
endpoint_url = "https://aivisions.no/data/daysoff/api/v1/booking/"
|
165 |
-
|
166 |
-
match = re.search(booking_pattern, user_message)
|
167 |
-
if match:
|
168 |
-
|
169 |
-
bestillingskode = match.group()
|
170 |
-
post_data = {
|
171 |
-
"url": endpoint_url,
|
172 |
-
"body": {
|
173 |
-
"booking_id": bestillingskode
|
174 |
-
}
|
175 |
-
}
|
176 |
-
|
177 |
-
response = await post_tool.ainvoke(
|
178 |
-
json.dumps(post_data),
|
179 |
-
[cl.AsyncLangchainCallbackHandler()] # config={"callbacks":
|
180 |
-
)
|
181 |
-
|
182 |
-
# --degug!
|
183 |
-
print(f"Raw response: {response}")
|
184 |
-
|
185 |
-
if response:
|
186 |
-
try:
|
187 |
-
booking_data = json.loads(response.get("output", "{}"))
|
188 |
-
table = "| Field | Information |\n|---|---|\n"
|
189 |
-
|
190 |
-
table = f"""
|
191 |
-
| Field | Value |
|
192 |
-
|-------------|--------------------|
|
193 |
-
| Booking ID | {booking_data.get('booking_id', 'N/A')} |
|
194 |
-
| Name | {booking_data.get('full_name', 'N/A')} |
|
195 |
-
| Amount | {booking_data.get('amount', 'N/A')} kr |
|
196 |
-
| Check-in | {booking_data.get('checkin', 'N/A')} |
|
197 |
-
| Check-out | {booking_data.get('checkout', 'N/A')} |
|
198 |
-
| Address | {booking_data.get('address', 'N/A')} |
|
199 |
-
| User ID | {booking_data.get('user_id', 'N/A')} |
|
200 |
-
| Info | {booking_data.get('infotext', 'N/A')} |
|
201 |
-
| Included | {booking_data.get('included', 'N/A')} |
|
202 |
-
"""
|
203 |
-
await cl.Message(content=table).send()
|
204 |
-
|
205 |
-
except Exception as e:
|
206 |
-
error_msg = f"Error: Could not parse the booking information. Details: {str(e)}"
|
207 |
-
await cl.Message(error_msg).send()
|
208 |
-
|
209 |
-
else:
|
210 |
-
response = await llm_chain.ainvoke(
|
211 |
-
user_message, # {"chat_history": "", "question": user_message}
|
212 |
-
)
|
213 |
-
await cl.Message(content=response).send()
|
214 |
-
|
215 |
-
response_key = "output" if "output" in response else "text"
|
216 |
-
|
217 |
-
await cl.Message(response.get(response_key, "")).send()
|
218 |
-
return message.content
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|