### title: 010125-daysoff-assistant-api ### file: app.py import asyncio import os import re import time import json import torch from api_docs_mck import api_docs_str import chainlit as cl from langchain import hub from langchain.chains import LLMChain, APIChain from langchain_core.prompts import PromptTemplate #from langchain_community.llms import HuggingFaceHub from langchain_huggingface import HuggingFaceEndpoint from langchain.memory.buffer import ConversationBufferMemory HUGGINGFACEHUB_API_TOKEN = os.environ.get("HUGGINGFACEHUB_API_TOKEN") BOOKING_ID = r'\b[A-Z]{6}\d{6}\b' BOOKING_KEYWORDS = [ "booking", "bestillingsnummer", "bookingen", "ordrenummer", "reservation", "rezerwacji", "bookingreferanse", "rezerwacja", "booket", "reservation number", "bestilling", "order number", "booking ID", "identyfikacyjny płatności" ] daysoff_assistant_system_template = """ You are an AI customer support assistant for Daysoff. By default, you respond in Norwegian to {question}. In all other cases, adapt to user's language and respond accordingly. You can retrieving booking information for a given booking ID. In addition, you can inform on Daysoff's personvernspolicy and verticals." Chat History: {chat_history} Question: {question} Answer: """ daysoff_assistant_system_prompt= PromptTemplate( input_variables=["chat_history", "question"], template=daysoff_assistant_system_template ) api_url_template = """ Given the following API Documentation for Daysoff's official booking information API: {api_docs} Your task is to construct the most efficient API URL to answer the user's question, ensuring the call is optimized to include only the necessary information. Question: {question} API URL: """ api_url_prompt = PromptTemplate(input_variables=['api_docs', 'question'], template=api_url_template) api_response_template = """ IF and only IF {question} contains alphanumeric identifier:{BOOKING_ID}, with the API Documentation for Daysoff's official API: {api_docs} in mind, and given this API URL: {api_url} for querying, here is the response from Daysoff's API: {api_response}. Please provide only information that directly addresses the user's question, omitting technical details like response format, and focusing on delivering the answer with clarity and conciseness, as if Daysoff's human customer service agent is providing this information themselves. Her er informasjon om bestilligen: """ api_response_prompt = PromptTemplate( input_variables=['api_docs', 'question', 'api_url', 'api_response'], template=api_response_template ) @cl.on_chat_start def setup_multiple_chains(): llm = HuggingFaceEndpoint( repo_id="google/gemma-2-2b-it", huggingfacehub_api_token=HUGGINGFACEHUB_API_TOKEN, #max_new_tokens=512, temperature=0.7, task="text-generation" ) conversation_memory = ConversationBufferMemory(memory_key="chat_history", max_len=200, return_messages=True, ) llm_chain = LLMChain(llm=llm, prompt=daysoff_assistant_booking_prompt, memory=conversation_memory ) cl.user_session.set("llm_chain", llm_chain) api_chain = APIChain.from_llm_and_api_docs( llm=llm, api_docs=api_docs_str, api_url_prompt=api_url_prompt, api_response_prompt=api_response_prompt, verbose=True, limit_to_domains=None ) cl.user_session.set("api_chain", api_chain) @cl.on_message async def handle_message(message: cl.Message): user_message = message.content.lower() llm_chain = cl.user_session.get("llm_chain") api_chain = cl.user_session.get("api_chain") def is_booking_query(user_message): match = re.search(r'\b[A-Z]{6}\d{6}\b', user_message) return match if match: response = await api_chain.acall(user_message, callbacks=[cl.AsyncLangchainCallbackHandler()]) else: response = await llm_chain.acall(user_message, callbacks=[cl.AsyncLangchainCallbackHandler()]) response_key = "output" if "output" in response else "text" await cl.Message(response.get(response_key, "")).send() return message.content # await cl.Message(response.get(response_key, "")).send() # content=f"Her er informasjonen for bestillingsnummer {booking_id}:\n{booking_info}").send()