Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -37,17 +37,18 @@ from fpdf import FPDF
|
|
37 |
import psutil
|
38 |
from gpuinfo import GPUInfo
|
39 |
|
40 |
-
import numpy as np
|
41 |
import torch
|
42 |
-
import torchaudio
|
43 |
-
import torchaudio.transforms as transforms
|
44 |
|
45 |
-
from transformers import pipeline
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
-
import spacy
|
48 |
-
import networkx as nx
|
49 |
-
from sklearn.feature_extraction.text import TfidfVectorizer
|
50 |
-
from sklearn.metrics.pairwise import cosine_similarity
|
51 |
warnings.filterwarnings("ignore")
|
52 |
|
53 |
# ------------header section------------
|
@@ -107,124 +108,6 @@ def transcribe(microphone, file_upload, batch_size=15):
|
|
107 |
|
108 |
return warn_output + text.strip(), system_info
|
109 |
|
110 |
-
# ------------summary section------------
|
111 |
-
|
112 |
-
# ------------for app integration later------------
|
113 |
-
|
114 |
-
nlp = spacy.blank("nb") # codename 'nb' = Norwegian Bokmål
|
115 |
-
nlp.add_pipe('sentencizer')
|
116 |
-
spacy_stop_words = spacy.lang.nb.stop_words.STOP_WORDS
|
117 |
-
|
118 |
-
summarization_model = AutoModel.from_pretrained("NbAiLab/nb-bert-large")
|
119 |
-
# pipe = pipeline("fill-mask", model="NbAiLab/nb-bert-large")
|
120 |
-
|
121 |
-
@spaces.GPU()
|
122 |
-
def clean_text(text):
|
123 |
-
text = re.sub(r'https?:\/\/.*[\r\n]*', '', text)
|
124 |
-
text = re.sub(r'[^\w\s]', '', text)
|
125 |
-
text = re.sub(r'\s+', ' ', text).strip()
|
126 |
-
return text
|
127 |
-
|
128 |
-
@spaces.GPU()
|
129 |
-
def preprocess_text(text, file_upload):
|
130 |
-
|
131 |
-
if (text is not None) and (file_upload is None):
|
132 |
-
doc = nlp(text)
|
133 |
-
|
134 |
-
elif (text is None) and (file_upload is not None):
|
135 |
-
doc = nlp(file_upload)
|
136 |
-
|
137 |
-
stop_words = spacy_stop_words
|
138 |
-
words = [token.text for token in doc if token.text.lower() not in stop_words]
|
139 |
-
return ' '.join(words)
|
140 |
-
|
141 |
-
@spaces.GPU()
|
142 |
-
def summarize_text(text, file_upload):
|
143 |
-
#
|
144 |
-
# ----add same if/elif logic as above here----
|
145 |
-
#
|
146 |
-
preprocessed_text = preprocess_text(text, file_upload)
|
147 |
-
inputs = summarization_model(preprocessed_text, max_length=1024, return_tensors="pt", truncation=True)
|
148 |
-
inputs = inputs.to(device)
|
149 |
-
summary_ids = summarization_model.generate(inputs.input_ids, num_beams=5, max_length=150, early_stopping=True)
|
150 |
-
return summarization_model.decode(summary_ids[0], skip_special_tokens=True)
|
151 |
-
|
152 |
-
@spaces.GPU()
|
153 |
-
def build_similarity_matrix(sentences):
|
154 |
-
similarity_matrix = nx.Graph()
|
155 |
-
for i, tokens_a in enumerate(sentences):
|
156 |
-
for j, tokens_b in enumerate(sentences):
|
157 |
-
if i != j:
|
158 |
-
common_words = set(tokens_a) & set(tokens_b)
|
159 |
-
similarity_matrix.add_edge(i, j, weight=len(common_words))
|
160 |
-
return similarity_matrix
|
161 |
-
|
162 |
-
# PageRank
|
163 |
-
@spaces.GPU()
|
164 |
-
def graph_based_summary(text, file_upload, num_paragraphs=3):
|
165 |
-
#
|
166 |
-
# ----add same if/elif logic as above here----
|
167 |
-
#
|
168 |
-
sentences = [sent.text for sent in doc.sents]
|
169 |
-
if len(sentences) < num_paragraphs:
|
170 |
-
return ' '.join(sentences)
|
171 |
-
|
172 |
-
sentence_tokens = [nlp(sent) for sent in sentences]
|
173 |
-
stop_words = spacy_stop_words
|
174 |
-
filtered_tokens = [[token.text for token in tokens if token.text.lower() not in stop_words] for tokens in sentence_tokens]
|
175 |
-
similarity_matrix = build_similarity_matrix(filtered_tokens)
|
176 |
-
|
177 |
-
scores = nx.pagerank(similarity_matrix)
|
178 |
-
ranked_sentences = sorted(((scores[i], sent) for i, sent in enumerate(sentences)), reverse=True)
|
179 |
-
return ' '.join([sent for _, sent in ranked_sentences[:num_paragraphs]])
|
180 |
-
|
181 |
-
@spaces.GPU()
|
182 |
-
def lex_rank_summary(text, file_upload, num_paragraphs=3, threshold=0.1):
|
183 |
-
|
184 |
-
if (text is not None) and (file_upload is None):
|
185 |
-
doc = nlp(text)
|
186 |
-
|
187 |
-
elif (text is None) and (file_upload is not None):
|
188 |
-
doc = nlp(file_upload)
|
189 |
-
|
190 |
-
sentences = [sent.text for sent in doc.sents]
|
191 |
-
if len(sentences) < num_paragraphs:
|
192 |
-
return ' '.join(sentences)
|
193 |
-
|
194 |
-
stop_words = spacy_stop_words
|
195 |
-
vectorizer = TfidfVectorizer(stop_words=list(stop_words))
|
196 |
-
X = vectorizer.fit_transform(sentences)
|
197 |
-
similarity_matrix = cosine_similarity(X, X)
|
198 |
-
|
199 |
-
# Apply threshold@similarity matrix
|
200 |
-
similarity_matrix[similarity_matrix < threshold] = 0
|
201 |
-
nx_graph = nx.from_numpy_array(similarity_matrix)
|
202 |
-
scores = nx.pagerank(nx_graph)
|
203 |
-
ranked_sentences = sorted(((scores[i], s) for i, s in enumerate(sentences)), reverse=True)
|
204 |
-
return ' '.join([ranked_sentences[i][1] for i in range(num_paragraphs)])
|
205 |
-
|
206 |
-
@spaces.GPU()
|
207 |
-
def text_rank_summary(text, file_upload, num_paragraphs=3):
|
208 |
-
|
209 |
-
if (text is not None) and (file_upload is not None):
|
210 |
-
doc = nlp(text)
|
211 |
-
|
212 |
-
elif (text is None) and (file_upload is not None):
|
213 |
-
doc = nlp(file_upload)
|
214 |
-
|
215 |
-
sentences = [sent.text for sent in doc.sents]
|
216 |
-
if len(sentences) < num_paragraphs:
|
217 |
-
return ' '.join(sentences)
|
218 |
-
|
219 |
-
stop_words = spacy_stop_words
|
220 |
-
vectorizer = TfidfVectorizer(stop_words=list(stop_words))
|
221 |
-
X = vectorizer.fit_transform(sentences)
|
222 |
-
similarity_matrix = cosine_similarity(X, X)
|
223 |
-
|
224 |
-
nx_graph = nx.from_numpy_array(similarity_matrix)
|
225 |
-
scores = nx.pagerank(nx_graph)
|
226 |
-
ranked_sentences = sorted(((scores[i], s) for i, s in enumerate(sentences)), reverse=True)
|
227 |
-
return ' '.join([ranked_sentences[i][1] for i in range(num_paragraphs)])
|
228 |
|
229 |
def save_to_pdf(text, summary):
|
230 |
pdf = FPDF()
|
@@ -245,6 +128,7 @@ def save_to_pdf(text, summary):
|
|
245 |
pdf.output(pdf_output_path)
|
246 |
return pdf_output_path
|
247 |
|
|
|
248 |
iface = gr.Blocks()
|
249 |
|
250 |
with iface:
|
@@ -262,71 +146,12 @@ with iface:
|
|
262 |
transcribe_btn = gr.Button("Transcribe Interview")
|
263 |
text_output = gr.Textbox()
|
264 |
system_info = gr.Textbox(label="System Info")
|
265 |
-
|
266 |
-
# Corrected the order of arguments here to prevent the SyntaxError
|
267 |
transcribe_btn.click(fn=transcribe, inputs=[microphone, upload], outputs=[text_output, system_info])
|
268 |
|
269 |
with gr.Tabs():
|
270 |
-
|
271 |
-
with gr.TabItem("Summary | PageRank"):
|
272 |
-
text_input_graph = gr.Textbox(label="Input Text", placeholder="txt2summarize")
|
273 |
-
summary_output_graph = gr.Textbox(label="PageRank | token-based similarity")
|
274 |
-
|
275 |
-
gr.Markdown("""
|
276 |
-
**token-based**: similarity matrix edge weights representing token overlap/
|
277 |
-
ranked by their centrality in the graph (good with dense inter-sentence relationships)
|
278 |
-
""")
|
279 |
-
gr.Markdown("""
|
280 |
-
*Bjørn*: **gir sammendrag som fanger opp de mest relevante setninger i teksten**
|
281 |
-
""")
|
282 |
-
|
283 |
-
summarize_transcribed_button_graph = gr.Button("Summary of Transcribed Text, Click Here")
|
284 |
-
summarize_transcribed_button_graph.click(fn=lambda text: graph_based_summary(text, None), inputs=[text_input_graph], outputs=[summary_output_graph])
|
285 |
-
summarize_uploaded_button_graph = gr.Button("Upload Text to Summarize, Click Here")
|
286 |
-
summarize_uploaded_button_graph.click(fn=graph_based_summary, inputs=[None, upload], outputs=[summary_output_graph])
|
287 |
-
|
288 |
-
with gr.TabItem("Summary | LexRank"):
|
289 |
-
text_output = gr.Textbox(label="Transcription Output")
|
290 |
-
text_input_lex = gr.Textbox(label="Input Text", placeholder="txt2summarize")
|
291 |
-
summary_output_lex = gr.Textbox(label="LexRank | cosine similarity")
|
292 |
-
|
293 |
-
gr.Markdown("""
|
294 |
-
**semantic**: TF-IDF vectorization@cosine similarity matrix, ranked by eigenvector centrality.
|
295 |
-
(good for sparse graph structures with thresholding)
|
296 |
-
""")
|
297 |
-
gr.Markdown("""
|
298 |
-
*Bjørn*: **gir sammendrag som best fanger opp betydningen av hele teksten**
|
299 |
-
""")
|
300 |
-
|
301 |
-
summarize_transcribed_button_lex = gr.Button("Summary of Transcribed Text, Click Here")
|
302 |
-
summarize_transcribed_button_lex.click(fn=lambda text: lex_rank_summary(text, None), inputs=[text_input_lex], outputs=[summary_output_lex])
|
303 |
-
summarize_uploaded_button_lex = gr.Button("Upload Text to Summarize, Click Here")
|
304 |
-
summarize_uploaded_button_lex.click(fn=lex_rank_summary, inputs=[None, upload], outputs=[summary_output_lex])
|
305 |
-
|
306 |
-
with gr.TabItem("Summary | TextRank"):
|
307 |
-
text_input_text_rank = gr.Textbox(label="Input Text", placeholder="txt2summarize")
|
308 |
-
summary_output_text_rank = gr.Textbox(label="TextRank | lexical similarity")
|
309 |
-
|
310 |
-
gr.Markdown("""
|
311 |
-
**sentence**: graph with weighted edges based on lexical similarity. (i.e" "sentence similarity"word overlap)/sentence similarity
|
312 |
-
""")
|
313 |
-
gr.Markdown("""
|
314 |
-
*Bjørn*: **sammendrag basert på i de setningene som ligner mest på hverandre fra teksten**
|
315 |
-
""")
|
316 |
-
|
317 |
-
summarize_transcribed_button_text_rank = gr.Button("Summary of Transcribed Text, Click Here")
|
318 |
-
summarize_transcribed_button_text_rank.click(fn=lambda text: text_rank_summary(text, None), inputs=[text_input_text_rank], outputs=[summary_output_text_rank])
|
319 |
-
summarize_uploaded_button_text_rank = gr.Button("Upload Text to Summarize, Click Here")
|
320 |
-
summarize_uploaded_button_text_rank.click(fn=text_rank_summary, inputs=[None, upload], outputs=[summary_output_text_rank])
|
321 |
-
|
322 |
with gr.TabItem("Download PDF"):
|
323 |
-
pdf_text_only = gr.Button("Download PDF with Transcribed Text
|
324 |
-
pdf_summary_only = gr.Button("Download PDF with Summary-of-Transcribed-Text Only")
|
325 |
-
pdf_both = gr.Button("Download PDF with Both")
|
326 |
-
|
327 |
pdf_output = gr.File(label="Download PDF")
|
328 |
|
329 |
-
pdf_text_only.click(fn=lambda text: save_to_pdf(text, ""), inputs=[text_output], outputs=[pdf_output])
|
330 |
-
pdf_summary_only.click(fn=lambda summary: save_to_pdf("", summary), inputs=[summary_output_graph, summary_output_lex, summary_output_text_rank], outputs=[pdf_output]) # Includes all summary outputs
|
331 |
-
pdf_both.click(fn=lambda text, summary: save_to_pdf(text, summary), inputs=[text_output, summary_output_graph], outputs=[pdf_output])
|
332 |
-
|
|
|
37 |
import psutil
|
38 |
from gpuinfo import GPUInfo
|
39 |
|
40 |
+
#import numpy as np
|
41 |
import torch
|
42 |
+
#import torchaudio
|
43 |
+
#import torchaudio.transforms as transforms
|
44 |
|
45 |
+
from transformers import pipeline #AutoModel
|
46 |
+
|
47 |
+
#import spacy
|
48 |
+
#import networkx as nx
|
49 |
+
#from sklearn.feature_extraction.text import TfidfVectorizer
|
50 |
+
#from sklearn.metrics.pairwise import cosine_similarity
|
51 |
|
|
|
|
|
|
|
|
|
52 |
warnings.filterwarnings("ignore")
|
53 |
|
54 |
# ------------header section------------
|
|
|
108 |
|
109 |
return warn_output + text.strip(), system_info
|
110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
def save_to_pdf(text, summary):
|
113 |
pdf = FPDF()
|
|
|
128 |
pdf.output(pdf_output_path)
|
129 |
return pdf_output_path
|
130 |
|
131 |
+
|
132 |
iface = gr.Blocks()
|
133 |
|
134 |
with iface:
|
|
|
146 |
transcribe_btn = gr.Button("Transcribe Interview")
|
147 |
text_output = gr.Textbox()
|
148 |
system_info = gr.Textbox(label="System Info")
|
149 |
+
|
|
|
150 |
transcribe_btn.click(fn=transcribe, inputs=[microphone, upload], outputs=[text_output, system_info])
|
151 |
|
152 |
with gr.Tabs():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
with gr.TabItem("Download PDF"):
|
154 |
+
pdf_text_only = gr.Button("Download PDF with Transcribed Text")
|
|
|
|
|
|
|
155 |
pdf_output = gr.File(label="Download PDF")
|
156 |
|
157 |
+
pdf_text_only.click(fn=lambda text: save_to_pdf(text, ""), inputs=[text_output], outputs=[pdf_output])
|
|
|
|
|
|