camparchimedes commited on
Commit
6ec642d
·
verified ·
1 Parent(s): 3fa2ed9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -6
app.py CHANGED
@@ -35,7 +35,7 @@ import torch
35
  #import torchaudio
36
  #import torchaudio.transforms as transforms
37
 
38
- from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
39
 
40
  import spacy
41
  import networkx as nx
@@ -101,6 +101,11 @@ def transcribe_audio(audio_file, batch_size=16):
101
  return text.strip(), system_info
102
 
103
  # ------------summary section------------
 
 
 
 
 
104
  @spaces.GPU()
105
  def clean_text(text):
106
  text = re.sub(r'https?:\/\/.*[\r\n]*', '', text)
@@ -112,6 +117,9 @@ nlp = spacy.blank("nb") # 'nb' ==> codename = Norwegian Bokmål
112
  nlp.add_pipe('sentencizer')
113
  spacy_stop_words = spacy.lang.nb.stop_words.STOP_WORDS
114
 
 
 
 
115
  @spaces.GPU()
116
  def preprocess_text(text):
117
  # Process the text with SpaCy
@@ -122,7 +130,6 @@ def preprocess_text(text):
122
  words = [token.text for token in doc if token.text.lower() not in stop_words]
123
  return ' '.join(words)
124
 
125
- # Summarize w/T5 model
126
  @spaces.GPU()
127
  def summarize_text(text):
128
  preprocessed_text = preprocess_text(text)
@@ -130,7 +137,8 @@ def summarize_text(text):
130
  inputs = inputs.to(device)
131
  summary_ids = summarization_model.generate(inputs.input_ids, num_beams=5, max_length=150, early_stopping=True)
132
  return summarization_tokenizer.decode(summary_ids[0], skip_special_tokens=True)
133
-
 
134
  def build_similarity_matrix(sentences, stop_words):
135
  similarity_matrix = nx.Graph()
136
  for i, tokens_a in enumerate(sentences):
@@ -141,6 +149,7 @@ def build_similarity_matrix(sentences, stop_words):
141
  return similarity_matrix
142
 
143
  # PageRank
 
144
  def graph_based_summary(text, num_paragraphs=3):
145
  doc = nlp(text)
146
  sentences = [sent.text for sent in doc.sents]
@@ -157,8 +166,8 @@ def graph_based_summary(text, num_paragraphs=3):
157
  return ' '.join([sent for _, sent in ranked_sentences[:num_paragraphs]])
158
 
159
  # LexRank
 
160
  def lex_rank_summary(text, num_paragraphs=3, threshold=0.1):
161
-
162
  doc = nlp(text)
163
  sentences = [sent.text for sent in doc.sents]
164
  if len(sentences) < num_paragraphs:
@@ -177,8 +186,8 @@ def lex_rank_summary(text, num_paragraphs=3, threshold=0.1):
177
  return ' '.join([ranked_sentences[i][1] for i in range(num_paragraphs)])
178
 
179
  # TextRank
 
180
  def text_rank_summary(text, num_paragraphs=3):
181
-
182
  doc = nlp(text)
183
  sentences = [sent.text for sent in doc.sents]
184
  if len(sentences) < num_paragraphs:
@@ -268,7 +277,7 @@ with iface:
268
 
269
  """)
270
 
271
- @ summarize_transcribed_button_text_rank = gr.Button("Summary of Transcribed Text, Click Here")
272
  summarize_transcribed_button_text_rank.click(fn=lambda text: text_rank_summary(text), inputs=[text_output], outputs=[summary_output_text_rank])
273
  summarize_uploaded_button_text_rank = gr.Button("Upload Text to Summarize, Click Here")
274
  summarize_uploaded_button_text_rank.click(fn=text_rank_summary, inputs=[text_input_text_rank], outputs=[summary_output_text_rank])
 
35
  #import torchaudio
36
  #import torchaudio.transforms as transforms
37
 
38
+ from transformers import pipeline, AutoModel
39
 
40
  import spacy
41
  import networkx as nx
 
101
  return text.strip(), system_info
102
 
103
  # ------------summary section------------
104
+
105
+
106
+
107
+ # -----------------BLOCKS NEED EDIT....!--------------
108
+
109
  @spaces.GPU()
110
  def clean_text(text):
111
  text = re.sub(r'https?:\/\/.*[\r\n]*', '', text)
 
117
  nlp.add_pipe('sentencizer')
118
  spacy_stop_words = spacy.lang.nb.stop_words.STOP_WORDS
119
 
120
+ summarization_model = AutoModel.from_pretrained("NbAiLab/nb-bert-large")
121
+ # pipe = pipeline("fill-mask", model="NbAiLab/nb-bert-large")
122
+
123
  @spaces.GPU()
124
  def preprocess_text(text):
125
  # Process the text with SpaCy
 
130
  words = [token.text for token in doc if token.text.lower() not in stop_words]
131
  return ' '.join(words)
132
 
 
133
  @spaces.GPU()
134
  def summarize_text(text):
135
  preprocessed_text = preprocess_text(text)
 
137
  inputs = inputs.to(device)
138
  summary_ids = summarization_model.generate(inputs.input_ids, num_beams=5, max_length=150, early_stopping=True)
139
  return summarization_tokenizer.decode(summary_ids[0], skip_special_tokens=True)
140
+
141
+ @spaces.GPU()
142
  def build_similarity_matrix(sentences, stop_words):
143
  similarity_matrix = nx.Graph()
144
  for i, tokens_a in enumerate(sentences):
 
149
  return similarity_matrix
150
 
151
  # PageRank
152
+ @spaces.GPU()
153
  def graph_based_summary(text, num_paragraphs=3):
154
  doc = nlp(text)
155
  sentences = [sent.text for sent in doc.sents]
 
166
  return ' '.join([sent for _, sent in ranked_sentences[:num_paragraphs]])
167
 
168
  # LexRank
169
+ @spaces.GPU()
170
  def lex_rank_summary(text, num_paragraphs=3, threshold=0.1):
 
171
  doc = nlp(text)
172
  sentences = [sent.text for sent in doc.sents]
173
  if len(sentences) < num_paragraphs:
 
186
  return ' '.join([ranked_sentences[i][1] for i in range(num_paragraphs)])
187
 
188
  # TextRank
189
+ @spaces.GPU()
190
  def text_rank_summary(text, num_paragraphs=3):
 
191
  doc = nlp(text)
192
  sentences = [sent.text for sent in doc.sents]
193
  if len(sentences) < num_paragraphs:
 
277
 
278
  """)
279
 
280
+ summarize_transcribed_button_text_rank = gr.Button("Summary of Transcribed Text, Click Here")
281
  summarize_transcribed_button_text_rank.click(fn=lambda text: text_rank_summary(text), inputs=[text_output], outputs=[summary_output_text_rank])
282
  summarize_uploaded_button_text_rank = gr.Button("Upload Text to Summarize, Click Here")
283
  summarize_uploaded_button_text_rank.click(fn=text_rank_summary, inputs=[text_input_text_rank], outputs=[summary_output_text_rank])