cansa commited on
Commit
338eb85
·
verified ·
1 Parent(s): 042541c

Show all models

Browse files
Files changed (1) hide show
  1. index.js +43 -39
index.js CHANGED
@@ -1,22 +1,25 @@
1
  import { env, AutoProcessor, AutoModel, RawImage } from 'https://cdn.jsdelivr.net/npm/@xenova/[email protected]';
2
 
3
- // Since we will download the model from the Hugging Face Hub, we can skip the local model check
4
  env.allowLocalModels = false;
5
 
6
- // Reference the elements that we will need
7
  const status = document.getElementById('status');
8
  const fileUpload = document.getElementById('upload');
9
- const imageContainer = document.getElementById('container');
10
  const example = document.getElementById('example');
 
11
 
12
  const EXAMPLE_URL = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/city-streets.jpg';
13
  const THRESHOLD = 0.25;
 
 
 
 
 
 
 
 
 
 
14
 
15
- // Create a new object detection pipeline
16
- status.textContent = 'Loading model...';
17
- const model_id = 'onnx-community/yolov10x';
18
- const processor = await AutoProcessor.from_pretrained(model_id);
19
- const model = await AutoModel.from_pretrained(model_id);
20
  status.textContent = 'Ready';
21
 
22
  example.addEventListener('click', (e) => {
@@ -31,51 +34,53 @@ fileUpload.addEventListener('change', function (e) {
31
  }
32
 
33
  const reader = new FileReader();
34
-
35
- // Set up a callback when the file is loaded
36
  reader.onload = e2 => detect(e2.target.result);
37
-
38
  reader.readAsDataURL(file);
39
  });
40
 
41
-
42
- // Detect objects in the image
43
  async function detect(url) {
44
- // Update UI
45
- imageContainer.innerHTML = '';
46
 
47
- // Read image
48
  const image = await RawImage.fromURL(url);
49
-
50
- // Set container width and height depending on the image aspect ratio
51
  const ar = image.width / image.height;
52
  const [cw, ch] = (ar > 1) ? [640, 640 / ar] : [640 * ar, 640];
53
- imageContainer.style.width = `${cw}px`;
54
- imageContainer.style.height = `${ch}px`;
55
- imageContainer.style.backgroundImage = `url(${url})`;
56
 
57
  status.textContent = 'Analysing...';
58
 
59
- // Preprocess image
60
- const inputs = await processor(image);
61
-
62
- // Predict bounding boxes
63
- const { output0 } = await model({ images: inputs.pixel_values });
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64
 
65
  status.textContent = '';
66
-
67
- const sizes = inputs.reshaped_input_sizes[0].reverse();
68
- output0.tolist()[0].forEach(x => renderBox(x, sizes));
69
  }
70
 
71
- // Render a bounding box and label on the image
72
- function renderBox([xmin, ymin, xmax, ymax, score, id], [w, h]) {
73
- if (score < THRESHOLD) return; // Skip boxes with low confidence
74
 
75
- // Generate a random color for the box
76
  const color = '#' + Math.floor(Math.random() * 0xFFFFFF).toString(16).padStart(6, 0);
77
 
78
- // Draw the box
79
  const boxElement = document.createElement('div');
80
  boxElement.className = 'bounding-box';
81
  Object.assign(boxElement.style, {
@@ -84,14 +89,13 @@ function renderBox([xmin, ymin, xmax, ymax, score, id], [w, h]) {
84
  top: 100 * ymin / h + '%',
85
  width: 100 * (xmax - xmin) / w + '%',
86
  height: 100 * (ymax - ymin) / h + '%',
87
- })
88
 
89
- // Draw label
90
  const labelElement = document.createElement('span');
91
- labelElement.textContent = model.config.id2label[id];
92
  labelElement.className = 'bounding-box-label';
93
  labelElement.style.backgroundColor = color;
94
 
95
  boxElement.appendChild(labelElement);
96
- imageContainer.appendChild(boxElement);
97
- }
 
1
  import { env, AutoProcessor, AutoModel, RawImage } from 'https://cdn.jsdelivr.net/npm/@xenova/[email protected]';
2
 
 
3
  env.allowLocalModels = false;
4
 
 
5
  const status = document.getElementById('status');
6
  const fileUpload = document.getElementById('upload');
 
7
  const example = document.getElementById('example');
8
+ const resultsContainer = document.getElementById('results');
9
 
10
  const EXAMPLE_URL = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/city-streets.jpg';
11
  const THRESHOLD = 0.25;
12
+ const MODEL_VARIANTS = ['yolov10n', 'yolov10s', 'yolov10m', 'yolov10b', 'yolov10l', 'yolov10x'];
13
+
14
+ status.textContent = 'Loading models...';
15
+
16
+ const models = await Promise.all(MODEL_VARIANTS.map(async variant => {
17
+ const model_id = `onnx-community/${variant}`;
18
+ const processor = await AutoProcessor.from_pretrained(model_id);
19
+ const model = await AutoModel.from_pretrained(model_id);
20
+ return { variant, processor, model };
21
+ }));
22
 
 
 
 
 
 
23
  status.textContent = 'Ready';
24
 
25
  example.addEventListener('click', (e) => {
 
34
  }
35
 
36
  const reader = new FileReader();
 
 
37
  reader.onload = e2 => detect(e2.target.result);
 
38
  reader.readAsDataURL(file);
39
  });
40
 
 
 
41
  async function detect(url) {
42
+ resultsContainer.innerHTML = '';
 
43
 
 
44
  const image = await RawImage.fromURL(url);
 
 
45
  const ar = image.width / image.height;
46
  const [cw, ch] = (ar > 1) ? [640, 640 / ar] : [640 * ar, 640];
 
 
 
47
 
48
  status.textContent = 'Analysing...';
49
 
50
+ await Promise.all(models.map(async ({ variant, processor, model }) => {
51
+ const inputs = await processor(image);
52
+ const { output0 } = await model({ images: inputs.pixel_values });
53
+
54
+ const sizes = inputs.reshaped_input_sizes[0].reverse();
55
+ const container = document.createElement('div');
56
+ container.className = 'image-container';
57
+ container.style.width = `${cw}px`;
58
+ container.style.height = `${ch}px`;
59
+ container.style.backgroundImage = `url(${url})`;
60
+
61
+ const label = document.createElement('div');
62
+ label.textContent = variant;
63
+ label.style.position = 'absolute';
64
+ label.style.top = '0';
65
+ label.style.left = '0';
66
+ label.style.backgroundColor = 'rgba(0, 0, 0, 0.5)';
67
+ label.style.color = '#fff';
68
+ label.style.padding = '5px';
69
+ container.appendChild(label);
70
+
71
+ output0.tolist()[0].forEach(x => renderBox(x, sizes, container, model.config.id2label));
72
+
73
+ resultsContainer.appendChild(container);
74
+ }));
75
 
76
  status.textContent = '';
 
 
 
77
  }
78
 
79
+ function renderBox([xmin, ymin, xmax, ymax, score, id], [w, h], container, id2label) {
80
+ if (score < THRESHOLD) return;
 
81
 
 
82
  const color = '#' + Math.floor(Math.random() * 0xFFFFFF).toString(16).padStart(6, 0);
83
 
 
84
  const boxElement = document.createElement('div');
85
  boxElement.className = 'bounding-box';
86
  Object.assign(boxElement.style, {
 
89
  top: 100 * ymin / h + '%',
90
  width: 100 * (xmax - xmin) / w + '%',
91
  height: 100 * (ymax - ymin) / h + '%',
92
+ });
93
 
 
94
  const labelElement = document.createElement('span');
95
+ labelElement.textContent = id2label[id];
96
  labelElement.className = 'bounding-box-label';
97
  labelElement.style.backgroundColor = color;
98
 
99
  boxElement.appendChild(labelElement);
100
+ container.appendChild(boxElement);
101
+ }