|
from __future__ import annotations |
|
|
|
import base64 |
|
import json |
|
from aiohttp import ClientSession, BaseConnector |
|
|
|
from ...typing import AsyncResult, Messages, ImageType |
|
from ..base_provider import AsyncGeneratorProvider, ProviderModelMixin |
|
from ...image import to_bytes, is_accepted_format |
|
from ...errors import MissingAuthError |
|
from ..helper import get_connector |
|
|
|
class GeminiPro(AsyncGeneratorProvider, ProviderModelMixin): |
|
label = "Gemini API" |
|
url = "https://ai.google.dev" |
|
working = True |
|
supports_message_history = True |
|
needs_auth = True |
|
default_model = "gemini-1.5-pro" |
|
default_vision_model = default_model |
|
models = [default_model, "gemini-pro", "gemini-1.5-flash", "gemini-1.5-flash-8b"] |
|
|
|
@classmethod |
|
async def create_async_generator( |
|
cls, |
|
model: str, |
|
messages: Messages, |
|
stream: bool = False, |
|
proxy: str = None, |
|
api_key: str = None, |
|
api_base: str = "https://generativelanguage.googleapis.com/v1beta", |
|
use_auth_header: bool = False, |
|
image: ImageType = None, |
|
connector: BaseConnector = None, |
|
**kwargs |
|
) -> AsyncResult: |
|
model = cls.get_model(model) |
|
|
|
if not api_key: |
|
raise MissingAuthError('Add a "api_key"') |
|
|
|
headers = params = None |
|
if use_auth_header: |
|
headers = {"Authorization": f"Bearer {api_key}"} |
|
else: |
|
params = {"key": api_key} |
|
|
|
method = "streamGenerateContent" if stream else "generateContent" |
|
url = f"{api_base.rstrip('/')}/models/{model}:{method}" |
|
async with ClientSession(headers=headers, connector=get_connector(connector, proxy)) as session: |
|
contents = [ |
|
{ |
|
"role": "model" if message["role"] == "assistant" else "user", |
|
"parts": [{"text": message["content"]}] |
|
} |
|
for message in messages |
|
if message["role"] != "system" |
|
] |
|
if image is not None: |
|
image = to_bytes(image) |
|
contents[-1]["parts"].append({ |
|
"inline_data": { |
|
"mime_type": is_accepted_format(image), |
|
"data": base64.b64encode(image).decode() |
|
} |
|
}) |
|
data = { |
|
"contents": contents, |
|
"generationConfig": { |
|
"stopSequences": kwargs.get("stop"), |
|
"temperature": kwargs.get("temperature"), |
|
"maxOutputTokens": kwargs.get("max_tokens"), |
|
"topP": kwargs.get("top_p"), |
|
"topK": kwargs.get("top_k"), |
|
} |
|
} |
|
system_prompt = "\n".join( |
|
message["content"] |
|
for message in messages |
|
if message["role"] == "system" |
|
) |
|
if system_prompt: |
|
data["system_instruction"] = {"parts": {"text": system_prompt}} |
|
async with session.post(url, params=params, json=data) as response: |
|
if not response.ok: |
|
data = await response.json() |
|
data = data[0] if isinstance(data, list) else data |
|
raise RuntimeError(f"Response {response.status}: {data['error']['message']}") |
|
if stream: |
|
lines = [] |
|
async for chunk in response.content: |
|
if chunk == b"[{\n": |
|
lines = [b"{\n"] |
|
elif chunk == b",\r\n" or chunk == b"]": |
|
try: |
|
data = b"".join(lines) |
|
data = json.loads(data) |
|
yield data["candidates"][0]["content"]["parts"][0]["text"] |
|
except: |
|
data = data.decode(errors="ignore") if isinstance(data, bytes) else data |
|
raise RuntimeError(f"Read chunk failed: {data}") |
|
lines = [] |
|
else: |
|
lines.append(chunk) |
|
else: |
|
data = await response.json() |
|
candidate = data["candidates"][0] |
|
if candidate["finishReason"] == "STOP": |
|
yield candidate["content"]["parts"][0]["text"] |
|
else: |
|
yield candidate["finishReason"] + ' ' + candidate["safetyRatings"] |