|
from __future__ import annotations |
|
|
|
import re |
|
import asyncio |
|
import uuid |
|
import json |
|
import base64 |
|
import time |
|
import requests |
|
from copy import copy |
|
|
|
try: |
|
import nodriver |
|
from nodriver.cdp.network import get_response_body |
|
has_nodriver = True |
|
except ImportError: |
|
has_nodriver = False |
|
|
|
from ..base_provider import AsyncGeneratorProvider, ProviderModelMixin |
|
from ...typing import AsyncResult, Messages, Cookies, ImageType, AsyncIterator |
|
from ...requests.raise_for_status import raise_for_status |
|
from ...requests import StreamSession |
|
from ...requests import get_nodriver |
|
from ...image import ImageResponse, ImageRequest, to_image, to_bytes, is_accepted_format |
|
from ...errors import MissingAuthError |
|
from ...providers.response import BaseConversation, FinishReason, SynthesizeData |
|
from ..helper import format_cookies |
|
from ..openai.har_file import get_request_config, NoValidHarFileError |
|
from ..openai.har_file import RequestConfig, arkReq, arkose_url, start_url, conversation_url, backend_url, backend_anon_url |
|
from ..openai.proofofwork import generate_proof_token |
|
from ..openai.new import get_requirements_token |
|
from ... import debug |
|
|
|
DEFAULT_HEADERS = { |
|
"accept": "*/*", |
|
"accept-encoding": "gzip, deflate, br, zstd", |
|
"accept-language": "en-US,en;q=0.5", |
|
"referer": "https://chatgpt.com/", |
|
"sec-ch-ua": "\"Brave\";v=\"123\", \"Not:A-Brand\";v=\"8\", \"Chromium\";v=\"123\"", |
|
"sec-ch-ua-mobile": "?0", |
|
"sec-ch-ua-platform": "\"Windows\"", |
|
"sec-fetch-dest": "empty", |
|
"sec-fetch-mode": "cors", |
|
"sec-fetch-site": "same-origin", |
|
"sec-gpc": "1", |
|
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/123.0.0.0 Safari/537.36" |
|
} |
|
|
|
class OpenaiChat(AsyncGeneratorProvider, ProviderModelMixin): |
|
"""A class for creating and managing conversations with OpenAI chat service""" |
|
|
|
label = "OpenAI ChatGPT" |
|
url = "https://chatgpt.com" |
|
working = True |
|
needs_auth = True |
|
supports_gpt_4 = True |
|
supports_message_history = True |
|
supports_system_message = True |
|
default_model = "auto" |
|
default_vision_model = "gpt-4o" |
|
fallback_models = [default_model, "gpt-4", "gpt-4o", "gpt-4o-mini", "gpt-4o-canmore", "o1-preview", "o1-mini"] |
|
vision_models = fallback_models |
|
image_models = fallback_models |
|
synthesize_content_type = "audio/mpeg" |
|
|
|
_api_key: str = None |
|
_headers: dict = None |
|
_cookies: Cookies = None |
|
_expires: int = None |
|
|
|
@classmethod |
|
def get_models(cls): |
|
if not cls.models: |
|
try: |
|
response = requests.get(f"{cls.url}/backend-anon/models") |
|
response.raise_for_status() |
|
data = response.json() |
|
cls.models = [model.get("slug") for model in data.get("models")] |
|
except Exception: |
|
cls.models = cls.fallback_models |
|
return cls.models |
|
|
|
@classmethod |
|
async def upload_image( |
|
cls, |
|
session: StreamSession, |
|
headers: dict, |
|
image: ImageType, |
|
image_name: str = None |
|
) -> ImageRequest: |
|
""" |
|
Upload an image to the service and get the download URL |
|
|
|
Args: |
|
session: The StreamSession object to use for requests |
|
headers: The headers to include in the requests |
|
image: The image to upload, either a PIL Image object or a bytes object |
|
|
|
Returns: |
|
An ImageRequest object that contains the download URL, file name, and other data |
|
""" |
|
|
|
data_bytes = to_bytes(image) |
|
image = to_image(data_bytes) |
|
extension = image.format.lower() |
|
data = { |
|
"file_name": "" if image_name is None else image_name, |
|
"file_size": len(data_bytes), |
|
"use_case": "multimodal" |
|
} |
|
|
|
async with session.post(f"{cls.url}/backend-api/files", json=data, headers=headers) as response: |
|
cls._update_request_args(session) |
|
await raise_for_status(response, "Create file failed") |
|
image_data = { |
|
**data, |
|
**await response.json(), |
|
"mime_type": is_accepted_format(data_bytes), |
|
"extension": extension, |
|
"height": image.height, |
|
"width": image.width |
|
} |
|
|
|
async with session.put( |
|
image_data["upload_url"], |
|
data=data_bytes, |
|
headers={ |
|
"Content-Type": image_data["mime_type"], |
|
"x-ms-blob-type": "BlockBlob" |
|
} |
|
) as response: |
|
await raise_for_status(response, "Send file failed") |
|
|
|
async with session.post( |
|
f"{cls.url}/backend-api/files/{image_data['file_id']}/uploaded", |
|
json={}, |
|
headers=headers |
|
) as response: |
|
cls._update_request_args(session) |
|
await raise_for_status(response, "Get download url failed") |
|
image_data["download_url"] = (await response.json())["download_url"] |
|
return ImageRequest(image_data) |
|
|
|
@classmethod |
|
def create_messages(cls, messages: Messages, image_request: ImageRequest = None, system_hints: list = None): |
|
""" |
|
Create a list of messages for the user input |
|
|
|
Args: |
|
prompt: The user input as a string |
|
image_response: The image response object, if any |
|
|
|
Returns: |
|
A list of messages with the user input and the image, if any |
|
""" |
|
|
|
messages = [{ |
|
"author": {"role": message["role"]}, |
|
"content": {"content_type": "text", "parts": [message["content"]]}, |
|
"id": str(uuid.uuid4()), |
|
"create_time": int(time.time()), |
|
"id": str(uuid.uuid4()), |
|
"metadata": {"serialization_metadata": {"custom_symbol_offsets": []}, "system_hints": system_hints}, |
|
} for message in messages] |
|
|
|
|
|
if image_request is not None: |
|
|
|
messages[-1]["content"] = { |
|
"content_type": "multimodal_text", |
|
"parts": [{ |
|
"asset_pointer": f"file-service://{image_request.get('file_id')}", |
|
"height": image_request.get("height"), |
|
"size_bytes": image_request.get("file_size"), |
|
"width": image_request.get("width"), |
|
}, messages[-1]["content"]["parts"][0]] |
|
} |
|
|
|
messages[-1]["metadata"] = { |
|
"attachments": [{ |
|
"height": image_request.get("height"), |
|
"id": image_request.get("file_id"), |
|
"mimeType": image_request.get("mime_type"), |
|
"name": image_request.get("file_name"), |
|
"size": image_request.get("file_size"), |
|
"width": image_request.get("width"), |
|
}] |
|
} |
|
return messages |
|
|
|
@classmethod |
|
async def get_generated_image(cls, session: StreamSession, headers: dict, element: dict, prompt: str = None) -> ImageResponse: |
|
""" |
|
Retrieves the image response based on the message content. |
|
|
|
This method processes the message content to extract image information and retrieves the |
|
corresponding image from the backend API. It then returns an ImageResponse object containing |
|
the image URL and the prompt used to generate the image. |
|
|
|
Args: |
|
session (StreamSession): The StreamSession object used for making HTTP requests. |
|
headers (dict): HTTP headers to be used for the request. |
|
line (dict): A dictionary representing the line of response that contains image information. |
|
|
|
Returns: |
|
ImageResponse: An object containing the image URL and the prompt, or None if no image is found. |
|
|
|
Raises: |
|
RuntimeError: If there'san error in downloading the image, including issues with the HTTP request or response. |
|
""" |
|
try: |
|
prompt = element["metadata"]["dalle"]["prompt"] |
|
file_id = element["asset_pointer"].split("file-service://", 1)[1] |
|
except TypeError: |
|
return |
|
except Exception as e: |
|
raise RuntimeError(f"No Image: {e.__class__.__name__}: {e}") |
|
try: |
|
async with session.get(f"{cls.url}/backend-api/files/{file_id}/download", headers=headers) as response: |
|
cls._update_request_args(session) |
|
await raise_for_status(response) |
|
download_url = (await response.json())["download_url"] |
|
return ImageResponse(download_url, prompt) |
|
except Exception as e: |
|
raise RuntimeError(f"Error in downloading image: {e}") |
|
|
|
@classmethod |
|
async def create_async_generator( |
|
cls, |
|
model: str, |
|
messages: Messages, |
|
proxy: str = None, |
|
timeout: int = 180, |
|
cookies: Cookies = None, |
|
auto_continue: bool = False, |
|
history_disabled: bool = False, |
|
action: str = "next", |
|
conversation_id: str = None, |
|
conversation: Conversation = None, |
|
parent_id: str = None, |
|
image: ImageType = None, |
|
image_name: str = None, |
|
return_conversation: bool = False, |
|
max_retries: int = 3, |
|
web_search: bool = False, |
|
**kwargs |
|
) -> AsyncResult: |
|
""" |
|
Create an asynchronous generator for the conversation. |
|
|
|
Args: |
|
model (str): The model name. |
|
messages (Messages): The list of previous messages. |
|
proxy (str): Proxy to use for requests. |
|
timeout (int): Timeout for requests. |
|
api_key (str): Access token for authentication. |
|
cookies (dict): Cookies to use for authentication. |
|
auto_continue (bool): Flag to automatically continue the conversation. |
|
history_disabled (bool): Flag to disable history and training. |
|
action (str): Type of action ('next', 'continue', 'variant'). |
|
conversation_id (str): ID of the conversation. |
|
parent_id (str): ID of the parent message. |
|
image (ImageType): Image to include in the conversation. |
|
return_conversation (bool): Flag to include response fields in the output. |
|
**kwargs: Additional keyword arguments. |
|
|
|
Yields: |
|
AsyncResult: Asynchronous results from the generator. |
|
|
|
Raises: |
|
RuntimeError: If an error occurs during processing. |
|
""" |
|
await cls.login(proxy) |
|
|
|
async with StreamSession( |
|
proxy=proxy, |
|
impersonate="chrome", |
|
timeout=timeout |
|
) as session: |
|
try: |
|
image_request = await cls.upload_image(session, cls._headers, image, image_name) if image else None |
|
except Exception as e: |
|
image_request = None |
|
debug.log("OpenaiChat: Upload image failed") |
|
debug.log(f"{e.__class__.__name__}: {e}") |
|
model = cls.get_model(model) |
|
if conversation is None: |
|
conversation = Conversation(conversation_id, str(uuid.uuid4()) if parent_id is None else parent_id) |
|
else: |
|
conversation = copy(conversation) |
|
if cls._api_key is None: |
|
auto_continue = False |
|
conversation.finish_reason = None |
|
while conversation.finish_reason is None: |
|
async with session.post( |
|
f"{cls.url}/backend-anon/sentinel/chat-requirements" |
|
if cls._api_key is None else |
|
f"{cls.url}/backend-api/sentinel/chat-requirements", |
|
json={"p": get_requirements_token(RequestConfig.proof_token) if RequestConfig.proof_token else None}, |
|
headers=cls._headers |
|
) as response: |
|
cls._update_request_args(session) |
|
await raise_for_status(response) |
|
chat_requirements = await response.json() |
|
need_turnstile = chat_requirements.get("turnstile", {}).get("required", False) |
|
need_arkose = chat_requirements.get("arkose", {}).get("required", False) |
|
chat_token = chat_requirements.get("token") |
|
|
|
if need_arkose and RequestConfig.arkose_token is None: |
|
await get_request_config(proxy) |
|
cls._create_request_args(RequestConfig,cookies, RequestConfig.headers) |
|
cls._set_api_key(RequestConfig.access_token) |
|
if RequestConfig.arkose_token is None: |
|
raise MissingAuthError("No arkose token found in .har file") |
|
|
|
if "proofofwork" in chat_requirements: |
|
proofofwork = generate_proof_token( |
|
**chat_requirements["proofofwork"], |
|
user_agent=cls._headers.get("user-agent"), |
|
proof_token=RequestConfig.proof_token |
|
) |
|
[debug.log(text) for text in ( |
|
f"Arkose: {'False' if not need_arkose else RequestConfig.arkose_token[:12]+'...'}", |
|
f"Proofofwork: {'False' if proofofwork is None else proofofwork[:12]+'...'}", |
|
f"AccessToken: {'False' if cls._api_key is None else cls._api_key[:12]+'...'}", |
|
)] |
|
data = { |
|
"action": action, |
|
"messages": None, |
|
"parent_message_id": conversation.message_id, |
|
"model": model, |
|
"paragen_cot_summary_display_override": "allow", |
|
"history_and_training_disabled": history_disabled and not auto_continue and not return_conversation, |
|
"conversation_mode": {"kind":"primary_assistant"}, |
|
"websocket_request_id": str(uuid.uuid4()), |
|
"supported_encodings": ["v1"], |
|
"supports_buffering": True, |
|
"system_hints": ["search"] if web_search else None |
|
} |
|
if conversation.conversation_id is not None: |
|
data["conversation_id"] = conversation.conversation_id |
|
debug.log(f"OpenaiChat: Use conversation: {conversation.conversation_id}") |
|
if action != "continue": |
|
messages = messages if conversation_id is None else [messages[-1]] |
|
data["messages"] = cls.create_messages(messages, image_request, ["search"] if web_search else None) |
|
headers = { |
|
**cls._headers, |
|
"accept": "text/event-stream", |
|
"content-type": "application/json", |
|
"openai-sentinel-chat-requirements-token": chat_token, |
|
} |
|
if RequestConfig.arkose_token: |
|
headers["openai-sentinel-arkose-token"] = RequestConfig.arkose_token |
|
if proofofwork is not None: |
|
headers["openai-sentinel-proof-token"] = proofofwork |
|
if need_turnstile and RequestConfig.turnstile_token is not None: |
|
headers['openai-sentinel-turnstile-token'] = RequestConfig.turnstile_token |
|
async with session.post( |
|
f"{cls.url}/backend-anon/conversation" |
|
if cls._api_key is None else |
|
f"{cls.url}/backend-api/conversation", |
|
json=data, |
|
headers=headers |
|
) as response: |
|
cls._update_request_args(session) |
|
if response.status == 403 and max_retries > 0: |
|
max_retries -= 1 |
|
debug.log(f"Retry: Error {response.status}: {await response.text()}") |
|
await asyncio.sleep(5) |
|
continue |
|
await raise_for_status(response) |
|
if return_conversation: |
|
yield conversation |
|
async for line in response.iter_lines(): |
|
async for chunk in cls.iter_messages_line(session, line, conversation): |
|
yield chunk |
|
if not history_disabled: |
|
yield SynthesizeData(cls.__name__, { |
|
"conversation_id": conversation.conversation_id, |
|
"message_id": conversation.message_id, |
|
"voice": "maple", |
|
}) |
|
if auto_continue and conversation.finish_reason == "max_tokens": |
|
conversation.finish_reason = None |
|
action = "continue" |
|
await asyncio.sleep(5) |
|
else: |
|
break |
|
yield FinishReason(conversation.finish_reason) |
|
|
|
@classmethod |
|
async def iter_messages_line(cls, session: StreamSession, line: bytes, fields: Conversation) -> AsyncIterator: |
|
if not line.startswith(b"data: "): |
|
return |
|
elif line.startswith(b"data: [DONE]"): |
|
if fields.finish_reason is None: |
|
fields.finish_reason = "error" |
|
return |
|
try: |
|
line = json.loads(line[6:]) |
|
except: |
|
return |
|
if isinstance(line, dict) and "v" in line: |
|
v = line.get("v") |
|
if isinstance(v, str) and fields.is_recipient: |
|
yield v |
|
elif isinstance(v, list) and fields.is_recipient: |
|
for m in v: |
|
if m.get("p") == "/message/content/parts/0": |
|
yield m.get("v") |
|
elif m.get("p") == "/message/metadata": |
|
fields.finish_reason = m.get("v", {}).get("finish_details", {}).get("type") |
|
break |
|
elif isinstance(v, dict): |
|
if fields.conversation_id is None: |
|
fields.conversation_id = v.get("conversation_id") |
|
debug.log(f"OpenaiChat: New conversation: {fields.conversation_id}") |
|
m = v.get("message", {}) |
|
fields.is_recipient = m.get("recipient") == "all" |
|
if fields.is_recipient: |
|
c = m.get("content", {}) |
|
if c.get("content_type") == "multimodal_text": |
|
generated_images = [] |
|
for element in c.get("parts"): |
|
if isinstance(element, dict) and element.get("content_type") == "image_asset_pointer": |
|
image = cls.get_generated_image(session, cls._headers, element) |
|
if image is not None: |
|
generated_images.append(image) |
|
for image_response in await asyncio.gather(*generated_images): |
|
yield image_response |
|
if m.get("author", {}).get("role") == "assistant": |
|
fields.message_id = v.get("message", {}).get("id") |
|
return |
|
if "error" in line and line.get("error"): |
|
raise RuntimeError(line.get("error")) |
|
|
|
@classmethod |
|
async def synthesize(cls, params: dict) -> AsyncIterator[bytes]: |
|
await cls.login() |
|
async with StreamSession( |
|
impersonate="chrome", |
|
timeout=900 |
|
) as session: |
|
async with session.get( |
|
f"{cls.url}/backend-api/synthesize", |
|
params=params, |
|
headers=cls._headers |
|
) as response: |
|
await raise_for_status(response) |
|
async for chunk in response.iter_content(): |
|
yield chunk |
|
|
|
@classmethod |
|
async def login(cls, proxy: str = None): |
|
if cls._expires is not None and cls._expires < time.time(): |
|
cls._headers = cls._api_key = None |
|
try: |
|
await get_request_config(proxy) |
|
cls._create_request_args(RequestConfig.cookies, RequestConfig.headers) |
|
cls._set_api_key(RequestConfig.access_token) |
|
except NoValidHarFileError: |
|
if has_nodriver: |
|
await cls.nodriver_auth(proxy) |
|
else: |
|
raise |
|
|
|
@classmethod |
|
async def nodriver_auth(cls, proxy: str = None): |
|
browser = await get_nodriver(proxy=proxy) |
|
page = browser.main_tab |
|
def on_request(event: nodriver.cdp.network.RequestWillBeSent): |
|
if event.request.url == start_url or event.request.url.startswith(conversation_url): |
|
RequestConfig.access_request_id = event.request_id |
|
RequestConfig.headers = event.request.headers |
|
elif event.request.url in (backend_url, backend_anon_url): |
|
if "OpenAI-Sentinel-Proof-Token" in event.request.headers: |
|
RequestConfig.proof_token = json.loads(base64.b64decode( |
|
event.request.headers["OpenAI-Sentinel-Proof-Token"].split("gAAAAAB", 1)[-1].encode() |
|
).decode()) |
|
if "OpenAI-Sentinel-Turnstile-Token" in event.request.headers: |
|
RequestConfig.turnstile_token = event.request.headers["OpenAI-Sentinel-Turnstile-Token"] |
|
if "Authorization" in event.request.headers: |
|
RequestConfig.access_token = event.request.headers["Authorization"].split()[-1] |
|
elif event.request.url == arkose_url: |
|
RequestConfig.arkose_request = arkReq( |
|
arkURL=event.request.url, |
|
arkBx=None, |
|
arkHeader=event.request.headers, |
|
arkBody=event.request.post_data, |
|
userAgent=event.request.headers.get("user-agent") |
|
) |
|
await page.send(nodriver.cdp.network.enable()) |
|
page.add_handler(nodriver.cdp.network.RequestWillBeSent, on_request) |
|
page = await browser.get(cls.url) |
|
try: |
|
if RequestConfig.access_request_id is not None: |
|
body = await page.send(get_response_body(RequestConfig.access_request_id)) |
|
if isinstance(body, tuple) and body: |
|
body = body[0] |
|
if body: |
|
match = re.search(r'"accessToken":"(.*?)"', body) |
|
if match: |
|
RequestConfig.access_token = match.group(1) |
|
except KeyError: |
|
pass |
|
for c in await page.send(nodriver.cdp.network.get_cookies([cls.url])): |
|
RequestConfig.cookies[c.name] = c.value |
|
user_agent = await page.evaluate("window.navigator.userAgent") |
|
await page.select("#prompt-textarea", 240) |
|
while True: |
|
if RequestConfig.proof_token: |
|
break |
|
await asyncio.sleep(1) |
|
await page.close() |
|
cls._create_request_args(RequestConfig.cookies, RequestConfig.headers, user_agent=user_agent) |
|
cls._set_api_key(RequestConfig.access_token) |
|
|
|
@staticmethod |
|
def get_default_headers() -> dict: |
|
return { |
|
**DEFAULT_HEADERS, |
|
"content-type": "application/json", |
|
} |
|
|
|
@classmethod |
|
def _create_request_args(cls, cookies: Cookies = None, headers: dict = None, user_agent: str = None): |
|
cls._headers = cls.get_default_headers() if headers is None else headers |
|
if user_agent is not None: |
|
cls._headers["user-agent"] = user_agent |
|
cls._cookies = {} if cookies is None else cookies |
|
cls._update_cookie_header() |
|
|
|
@classmethod |
|
def _update_request_args(cls, session: StreamSession): |
|
for c in session.cookie_jar if hasattr(session, "cookie_jar") else session.cookies.jar: |
|
cls._cookies[c.key if hasattr(c, "key") else c.name] = c.value |
|
cls._update_cookie_header() |
|
|
|
@classmethod |
|
def _set_api_key(cls, api_key: str): |
|
cls._api_key = api_key |
|
cls._expires = int(time.time()) + 60 * 60 * 4 |
|
if api_key: |
|
cls._headers["authorization"] = f"Bearer {api_key}" |
|
|
|
@classmethod |
|
def _update_cookie_header(cls): |
|
cls._headers["cookie"] = format_cookies(cls._cookies) |
|
|
|
class Conversation(BaseConversation): |
|
""" |
|
Class to encapsulate response fields. |
|
""" |
|
def __init__(self, conversation_id: str = None, message_id: str = None, finish_reason: str = None): |
|
self.conversation_id = conversation_id |
|
self.message_id = message_id |
|
self.finish_reason = finish_reason |
|
self.is_recipient = False |