File size: 38,266 Bytes
05005db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
#!/usr/bin/env python3
# -*- coding: utf-8 -*-

# Copyright 2019 Tomoki Hayashi
#  MIT License (https://opensource.org/licenses/MIT)

# Modified by Yiwei Guo, 2024

"""Train vec2wav."""

import argparse
import logging
import os
import sys
import random

from collections import defaultdict

import matplotlib
import numpy as np
import soundfile as sf
import torch
import torch.nn.functional as F
import yaml
import torch.multiprocessing as mp
from tensorboardX import SummaryWriter
from torch.utils.data import DataLoader
from tqdm import tqdm

import vec2wav2
import vec2wav2.models
import vec2wav2.optimizers
from torch.utils.data.distributed import DistributedSampler

from vec2wav2.datasets import AudioMelSCPDataset
from vec2wav2.layers import PQMF
from vec2wav2.losses import DiscriminatorAdversarialLoss
from vec2wav2.losses import FeatureMatchLoss
from vec2wav2.losses import GeneratorAdversarialLoss
from vec2wav2.losses import MelSpectrogramLoss
from vec2wav2.losses import MultiResolutionSTFTLoss
from vec2wav2.utils import crop_seq, load_feat_codebook, idx2vec

from vec2wav2.utils.espnet_utils import pad_list, make_non_pad_mask

# set to avoid matplotlib error in CLI environment
matplotlib.use("Agg")


def set_loglevel(verbose):
    # set logger
    if verbose > 1:
        logging.basicConfig(
            level=logging.DEBUG,
            stream=sys.stdout,
            format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
        )
    elif verbose > 0:
        logging.basicConfig(
            level=logging.INFO,
            stream=sys.stdout,
            format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
        )
    else:
        logging.basicConfig(
            level=logging.WARN,
            stream=sys.stdout,
            format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
        )
        logging.warning("Skip DEBUG/INFO messages")


class Trainer(object):
    """Customized trainer module for Parallel WaveGAN training."""

    def __init__(
            self,
            steps,
            epochs,
            data_loader,
            sampler,
            model,
            criterion,
            optimizer,
            scheduler,
            config,
            device=torch.device("cpu"),
    ):
        """Initialize trainer.

        Args:
            steps (int): Initial global steps.
            epochs (int): Initial global epochs.
            data_loader (dict): Dict of data loaders. It must contain "train" and "dev" loaders.
            model (dict): Dict of models. It must contain "generator" and "discriminator" models.
            criterion (dict): Dict of criteria. It must contain "stft" and "mse" criteria.
            optimizer (dict): Dict of optimizers. It must contain "generator" and "discriminator" optimizers.
            scheduler (dict): Dict of schedulers. It must contain "generator" and "discriminator" schedulers.
            config (dict): Config dict loaded from yaml format configuration file.
            device (torch.deive): Pytorch device instance.

        """
        self.steps = steps
        self.epochs = epochs
        self.data_loader = data_loader
        self.sampler = sampler
        self.model = model
        self.criterion = criterion
        self.optimizer = optimizer
        self.scheduler = scheduler
        self.config = config
        self.device = device
        self.writer = SummaryWriter(config["outdir"])
        self.finish_train = False
        self.total_train_loss = defaultdict(float)
        self.total_eval_loss = defaultdict(float)

        # load vq codebook
        feat_codebook_path = self.config["vq_codebook"]

        self.feat_codebook, self.feat_codebook_numgroups = load_feat_codebook(np.load(feat_codebook_path, allow_pickle=True), device)

    def run(self):
        """Run training."""
        self.tqdm = tqdm(initial=self.steps, total=self.config["train_max_steps"], desc="[train]")
        while True:
            # train one epoch
            self._train_epoch()

            # check whether training is finished
            if self.finish_train:
                break

        self.tqdm.close()
        logging.info("Finished training.")

    def save_checkpoint(self, checkpoint_path):
        """Save checkpoint.
        Args:
            checkpoint_path (str): Checkpoint path to be saved.
        """
        state_dict = {
            "optimizer": {
                "generator": self.optimizer["generator"].state_dict(),
                "discriminator": self.optimizer["discriminator"].state_dict(),
            },
            "scheduler": {
                "generator": self.scheduler["generator"].state_dict(),
                "discriminator": self.scheduler["discriminator"].state_dict(),
            },
            "steps": self.steps,
            "epochs": self.epochs,
        }
        if self.config["distributed"]:
            state_dict["model"] = {
                "generator": self.model["generator"].module.state_dict(),
                "discriminator": self.model["discriminator"].module.state_dict(),
            }
        else:
            state_dict["model"] = {
                "generator": self.model["generator"].state_dict(),
                "discriminator": self.model["discriminator"].state_dict(),
            }

        if not os.path.exists(os.path.dirname(checkpoint_path)):
            os.makedirs(os.path.dirname(checkpoint_path))
        torch.save(state_dict, checkpoint_path)

    def load_checkpoint(self, checkpoint_path, load_only_params=False):
        """Load checkpoint.

        Args:
            checkpoint_path (str): Checkpoint path to be loaded.
            load_only_params (bool): Whether to load only model parameters.

        """
        state_dict = torch.load(checkpoint_path, map_location="cpu")
        if self.config["distributed"]:
            self.model["generator"].module.load_state_dict(
                state_dict["model"]["generator"]
            )
            self.model["discriminator"].module.load_state_dict(
                state_dict["model"]["discriminator"]
            )
        else:
            self.model["generator"].load_state_dict(state_dict["model"]["generator"])
            self.model["discriminator"].load_state_dict(
                state_dict["model"]["discriminator"]
            )
        if not load_only_params:
            self.steps = state_dict["steps"]
            self.epochs = state_dict["epochs"]
            self.optimizer["generator"].load_state_dict(state_dict["optimizer"]["generator"])
            self.optimizer["discriminator"].load_state_dict(state_dict["optimizer"]["discriminator"])
            self.scheduler["generator"].load_state_dict(state_dict["scheduler"]["generator"])
            self.scheduler["discriminator"].load_state_dict(state_dict["scheduler"]["discriminator"])
    
    def _train_step(self, batch):
        """Train model one step."""
        # parse batch
        vqidx, mel, prompt, y, xlens, prompt_lens = batch
        vqidx = vqidx.to(self.device)
        mel = mel.to(self.device)
        prompt = prompt.to(self.device)
        vqvec = idx2vec(self.feat_codebook, vqidx, self.feat_codebook_numgroups)  # (B, L, D)
        y = y.unsqueeze(-2).to(self.device)  # (B, 1, T)

        # build mask
        mask = make_non_pad_mask(xlens).to(self.device)  # (B, L)
        prompt_mask = make_non_pad_mask(prompt_lens).to(self.device)  # (B, L_prompt)

        # crop wav sequence
        crop_xlen = min(self.config["crop_max_frames"], min(xlens))
        x_offsets = [np.random.randint(0, l - crop_xlen + 1) for l in xlens]
        crop_ylen = crop_xlen * self.config["hop_size"]
        y_offsets = [o * self.config["hop_size"] for o in x_offsets]
        y = crop_seq(y, y_offsets, crop_ylen)

        #######################
        #      Generator      #
        #######################
        if self.steps > self.config.get("generator_train_start_steps", 0):
            mel_, _, y_ = self.model["generator"](vqvec, prompt, mask, prompt_mask, crop_xlen, x_offsets)  # (B, L, 80), (B, C, T)

            # initialize
            gen_loss, aux_loss = 0.0, 0.0

            # frontend mel prediction loss
            if self.steps <= self.config.get("frontend_mel_prediction_stop_steps", 0):
                frontend_mel_pred_loss = F.l1_loss(torch.masked_select(mel, mask.unsqueeze(-1)),
                                                   torch.masked_select(mel_, mask.unsqueeze(-1)))
                self.total_train_loss["train/frontend_mel_pred_loss"] += frontend_mel_pred_loss.item()
                gen_loss += self.config["lambda_frontend_mel_prediction"] * frontend_mel_pred_loss

            # multi-resolution sfft loss
            if self.config["use_stft_loss"]:
                sc_loss, mag_loss = self.criterion["stft"](y_, y)
                aux_loss += sc_loss + mag_loss
                self.total_train_loss["train/spectral_convergence_loss"] += sc_loss.item()
                self.total_train_loss["train/log_stft_magnitude_loss"] += mag_loss.item()

            # subband multi-resolution stft loss
            if self.config["use_subband_stft_loss"]:
                aux_loss *= 0.5  # for balancing with subband stft loss
                y_mb = self.criterion["pqmf"].analysis(y)
                y_mb_ = self.criterion["pqmf"].analysis(y_)
                sub_sc_loss, sub_mag_loss = self.criterion["sub_stft"](y_mb_, y_mb)
                aux_loss += 0.5 * (sub_sc_loss + sub_mag_loss)
                self.total_train_loss["train/sub_spectral_convergence_loss"] += sub_sc_loss.item()
                self.total_train_loss["train/sub_log_stft_magnitude_loss"] += sub_mag_loss.item()

            # mel spectrogram loss
            if self.config["use_mel_loss"]:
                mel_loss = self.criterion["mel"](y_, y)
                aux_loss += mel_loss
                self.total_train_loss["train/mel_loss"] += mel_loss.item()

            # weighting aux loss
            gen_loss += self.config.get("lambda_aux", 1.0) * aux_loss

            # adversarial loss
            if self.steps > self.config["discriminator_train_start_steps"]:
                p_ = self.model["discriminator"](y_)
                adv_loss = self.criterion["gen_adv"](p_)
                self.total_train_loss["train/adversarial_loss"] += adv_loss.item()

                # feature matching loss
                if self.config["use_feat_match_loss"]:
                    # no need to track gradients
                    with torch.no_grad():
                        p = self.model["discriminator"](y)
                    fm_loss = self.criterion["feat_match"](p_, p)
                    self.total_train_loss["train/feature_matching_loss"] += fm_loss.item()
                    adv_loss += self.config["lambda_feat_match"] * fm_loss

                # add adversarial loss to generator loss
                gen_loss += self.config["lambda_adv"] * adv_loss

            self.total_train_loss["train/generator_loss"] += gen_loss.item()

            # update generator
            self.optimizer["generator"].zero_grad()
            gen_loss.backward()
            if self.config["generator_grad_norm"] > 0:
                torch.nn.utils.clip_grad_norm_(
                    self.model["generator"].parameters(),
                    self.config["generator_grad_norm"],
                )
            self.optimizer["generator"].step()
            self.scheduler["generator"].step()

        #######################
        #    Discriminator    #
        #######################
        if self.steps > self.config["discriminator_train_start_steps"]:
            # re-compute y_ which leads better quality
            with torch.no_grad():
                # logging.info(f"{vqvec.shape, prompt.shape, mask.shape, prompt_mask.shape}")
                _, _, y_ = self.model["generator"](vqvec, prompt, mask, prompt_mask, crop_xlen, x_offsets)  # (B, L, 80), (B, C, T)

            if self.config["generator_params"]["out_channels"] > 1:
                y_ = self.criterion["pqmf"].synthesis(y_)

            # discriminator loss
            p = self.model["discriminator"](y)
            p_ = self.model["discriminator"](y_.detach())
            real_loss, fake_loss = self.criterion["dis_adv"](p_, p)
            dis_loss = real_loss + fake_loss
            self.total_train_loss["train/real_loss"] += real_loss.item()
            self.total_train_loss["train/fake_loss"] += fake_loss.item()
            self.total_train_loss["train/discriminator_loss"] += dis_loss.item()

            # update discriminator
            self.optimizer["discriminator"].zero_grad()
            dis_loss.backward()
            if self.config["discriminator_grad_norm"] > 0:
                torch.nn.utils.clip_grad_norm_(
                    self.model["discriminator"].parameters(),
                    self.config["discriminator_grad_norm"],
                )
            self.optimizer["discriminator"].step()
            self.scheduler["discriminator"].step()

        # update counts
        self.steps += 1
        self.tqdm.update(1)
        self._check_train_finish()

    def _train_epoch(self):
        """Train model one epoch."""
        for train_steps_per_epoch, batch in enumerate(self.data_loader["train"], 1):
            # train one step
            self._train_step(batch)

            # check interval
            if self.config["rank"] == 0:
                self._check_log_interval()
                self._check_eval_interval()
                self._check_save_interval()

            # check whether training is finished
            if self.finish_train:
                return

        # update
        self.epochs += 1
        self.train_steps_per_epoch = train_steps_per_epoch
        logging.info(
            f"(Steps: {self.steps}) Finished {self.epochs} epoch training "
            f"({self.train_steps_per_epoch} steps per epoch)."
        )

        # needed for shuffle in distributed training
        if self.config["distributed"]:
            self.sampler["train"].set_epoch(self.epochs)

    @torch.no_grad()
    def _eval_step(self, batch):
        """Evaluate model one step."""
        # parse batch
        vqidx, mel, prompt, y, xlens, prompt_lens = batch
        vqidx = vqidx.to(self.device).long()
        mel = mel.to(self.device)
        prompt = prompt.to(self.device)
        vqvec = idx2vec(self.feat_codebook, vqidx, self.feat_codebook_numgroups)
        y = y.unsqueeze(-2).to(self.device)  # (B, 1, T)

        # build mask
        mask = make_non_pad_mask(xlens).to(self.device)  # (B, L)
        prompt_mask = make_non_pad_mask(prompt_lens).to(self.device)  # (B, L_prompt)

        #######################
        #      Generator      #
        #######################
        mel_, _, y_ = self.model["generator"](vqvec, prompt, mask, prompt_mask)  # (B, L, 80), (B, C, T)

        # reconstruct the signal from multi-band signal
        if self.config["generator_params"]["out_channels"] > 1:
            y_mb_ = y_
            y_ = self.criterion["pqmf"].synthesis(y_mb_)

        # initialize
        gen_loss = 0.0
        aux_loss = 0.0

        # frontend mel prediction loss
        frontend_mel_pred_loss = F.l1_loss(torch.masked_select(mel, mask.unsqueeze(-1)),
                                           torch.masked_select(mel_, mask.unsqueeze(-1)))
        self.total_eval_loss["eval/frontend_mel_pred_loss"] += frontend_mel_pred_loss.item()
        gen_loss += self.config["lambda_frontend_mel_prediction"] * frontend_mel_pred_loss

        # multi-resolution stft loss
        if self.config["use_stft_loss"]:
            sc_loss, mag_loss = self.criterion["stft"](y_, y)
            aux_loss += sc_loss + mag_loss
            self.total_eval_loss["eval/spectral_convergence_loss"] += sc_loss.item()
            self.total_eval_loss["eval/log_stft_magnitude_loss"] += mag_loss.item()

        # subband multi-resolution stft loss
        if self.config.get("use_subband_stft_loss", False):
            aux_loss *= 0.5  # for balancing with subband stft loss
            y_mb = self.criterion["pqmf"].analysis(y)
            sub_sc_loss, sub_mag_loss = self.criterion["sub_stft"](y_mb_, y_mb)
            self.total_eval_loss["eval/sub_spectral_convergence_loss"] += sub_sc_loss.item()
            self.total_eval_loss["eval/sub_log_stft_magnitude_loss"] += sub_mag_loss.item()
            aux_loss += 0.5 * (sub_sc_loss + sub_mag_loss)

        # mel spectrogram loss
        if self.config["use_mel_loss"]:
            mel_loss = self.criterion["mel"](y_, y)
            aux_loss += mel_loss
            self.total_eval_loss["eval/mel_loss"] += mel_loss.item()

        # weighting stft loss
        gen_loss += aux_loss * self.config.get("lambda_aux", 1.0)

        # adversarial loss
        p_ = self.model["discriminator"](y_)
        adv_loss = self.criterion["gen_adv"](p_)
        gen_loss += self.config["lambda_adv"] * adv_loss

        # feature matching loss
        if self.config["use_feat_match_loss"]:
            p = self.model["discriminator"](y)
            fm_loss = self.criterion["feat_match"](p_, p)
            self.total_eval_loss["eval/feature_matching_loss"] += fm_loss.item()
            gen_loss += (
                    self.config["lambda_adv"] * self.config["lambda_feat_match"] * fm_loss
            )

        #######################
        #    Discriminator    #
        #######################
        p = self.model["discriminator"](y)
        p_ = self.model["discriminator"](y_)

        # discriminator loss
        real_loss, fake_loss = self.criterion["dis_adv"](p_, p)
        dis_loss = real_loss + fake_loss

        # add to total eval loss
        self.total_eval_loss["eval/adversarial_loss"] += adv_loss.item()
        self.total_eval_loss["eval/generator_loss"] += gen_loss.item()
        self.total_eval_loss["eval/real_loss"] += real_loss.item()
        self.total_eval_loss["eval/fake_loss"] += fake_loss.item()
        self.total_eval_loss["eval/discriminator_loss"] += dis_loss.item()

    def _eval_epoch(self):
        """Evaluate model one epoch."""
        logging.info(f"(Steps: {self.steps}) Start evaluation.")
        # change mode
        for key in self.model.keys():
            self.model[key].eval()

        # calculate loss for each batch
        for eval_steps_per_epoch, batch in enumerate(tqdm(self.data_loader["dev"], desc="[eval]"), 1):
            # eval one step
            self._eval_step(batch)

        logging.info(
            f"(Steps: {self.steps}) Finished evaluation "
            f"({eval_steps_per_epoch} steps per epoch)."
        )

        # average loss
        for key in self.total_eval_loss.keys():
            self.total_eval_loss[key] /= eval_steps_per_epoch
            logging.info(f"(Steps: {self.steps}) {key} = {self.total_eval_loss[key]:.4f}.")

        # record
        self._write_to_tensorboard(self.total_eval_loss)

        # reset
        self.total_eval_loss = defaultdict(float)

        # restore mode
        for key in self.model.keys():
            self.model[key].train()

    def _write_to_tensorboard(self, loss):
        """Write to tensorboard."""
        for key, value in loss.items():
            self.writer.add_scalar(key, value, self.steps)

    def _check_save_interval(self):
        if self.steps % self.config["save_interval_steps"] == 0:
            self.save_checkpoint(os.path.join(self.config["outdir"], 
                                              f"checkpoint-{self.steps}steps.pkl"))
            logging.info(f"Successfully saved checkpoint @ {self.steps} steps.")

    def _check_eval_interval(self):
        if self.steps % self.config["eval_interval_steps"] == 0:
            self._eval_epoch()

    def _check_log_interval(self):
        if self.steps % self.config["log_interval_steps"] == 0:
            for key in self.total_train_loss.keys():
                self.total_train_loss[key] /= self.config["log_interval_steps"]
                logging.info(f"(Steps: {self.steps}) {key} = {self.total_train_loss[key]:.4f}.")
            self._write_to_tensorboard(self.total_train_loss)

            # reset
            self.total_train_loss = defaultdict(float)

    def _check_train_finish(self):
        if self.steps >= self.config["train_max_steps"]:
            self.finish_train = True


class Collator(object):
    """Customized collator for Pytorch DataLoader in training."""

    def __init__(
            self,
            hop_size=256,
            win_length=1024,
            sampling_rate=16000,
            prompt_dim=1024,
            prompt_fold_by_2=False
    ):
        """Initialize customized collator for PyTorch DataLoader.

        Args:
            hop_size (int): Hop size of features, in sampling points.
            win_length (int): window length of features.
            sampling_rate (int): sampling rate of waveform data
            prompt_dim (int): number of prompt embedding dimensions
        """
        self.hop_size = hop_size
        self.win_length = win_length
        self.sampling_rate = sampling_rate
        self.prompt_dim = prompt_dim
        if prompt_fold_by_2:
            self.prompt_len_factor = 2
        else:
            self.prompt_len_factor = 1

    def construct_prompt(self, mel_lens):
        prompt_lens = [random.randint(int(l / (3 * self.prompt_len_factor)), int(l / (2 * self.prompt_len_factor))) for l in mel_lens]
        prompt_starts = []
        is_from_start = []
        for ml, pl in zip(mel_lens, prompt_lens):
            if random.random() > 0.5:
                # from start
                prompt_start = random.randint(0, 1 * self.sampling_rate // (self.hop_size * self.prompt_len_factor))
                is_from_start.append(True)
            else:
                # from ending
                prompt_start = random.randint((ml - 1 * self.sampling_rate // self.hop_size) // self.prompt_len_factor, ml // self.prompt_len_factor) - pl
                is_from_start.append(False)
            prompt_starts.append(prompt_start)
        return prompt_lens, prompt_starts, is_from_start

    def __call__(self, batch):
        """Convert into batch tensors.

        Args:
            batch (list): list of tuple of the pair of audio and features.

        This collator will automatically determine the prompt segment (acoustic context) for each utterance.
        The prompt is cut off from the current utterance, ranging from one third to half of the original utterance.
        The prompt can be cut from either the starting or the ending of the utterance, within 1 second margin.
        The other features include 2-dim VQ features (2 is the number of groups), and D-dim prompts (e.g. WavLM features)

        Returns:
            Tensor ys: waveform batch (B, T).
            Tensors vqs, mels: Auxiliary feature batch (B, C, T'), where T' = T / hop_size.
            Tensor prompts: prompt feature batch (B, C, T'')
            List c_lengths, prompt_lengths: list of lengths
        """
        batch = batch[0]

        # check length
        batch = [self._adjust_length(*b) for b in batch]
        ys, vqs, mels, prompts_old = list(map(list, zip(*batch)))  # [(a,b), (c,d)] -> [a, c], [b, d]

        batch_size = len(vqs)

        prompt_lengths, prompt_starts, is_from_starts = self.construct_prompt([len(m) for m in mels])
        c_lengths = []
        prompts = torch.zeros(batch_size, max(prompt_lengths), self.prompt_dim)
        for i in range(batch_size):
            prompts[i, :prompt_lengths[i]] = torch.tensor(prompts_old[i][prompt_starts[i]:prompt_starts[i]+prompt_lengths[i], :])
            if is_from_starts[i]:
                start_idx = (prompt_starts[i] + prompt_lengths[i])*self.prompt_len_factor
                mels[i] = mels[i][start_idx:]
                vqs[i] = vqs[i][start_idx:]
                ys[i] = ys[i][start_idx * self.hop_size: ]
            else:
                end_idx = prompt_starts[i]*self.prompt_len_factor
                mels[i] = mels[i][:end_idx]
                vqs[i] = vqs[i][:end_idx]
                ys[i] = ys[i][:end_idx * self.hop_size]
            c_lengths.append(len(mels[i]))

        vqs = pad_list([torch.tensor(c) for c in vqs], pad_value=0) # (B, L, Groups)
        vqs = vqs.long()
        mels = pad_list([torch.tensor(c) for c in mels], pad_value=0)  # (B, L, 80)

        ys = pad_list([torch.tensor(y, dtype=torch.float) for y in ys], pad_value=0)[:, :mels.size(1) * self.hop_size]  # (B, T)
        assert ys.size(1) == mels.size(1) * self.hop_size == vqs.size(1) * self.hop_size

        return vqs, mels, prompts, ys, c_lengths, prompt_lengths

    def _adjust_length(self, x, c, *args):
        """Adjust the audio and feature lengths.

        Note:
            Basically we assume that the length of x and c are adjusted
            through preprocessing stage, but if we use other library processed
            features, this process will be needed.

        """
        if len(x) > len(c) * self.hop_size:
            x = x[(self.win_length - self.hop_size) // 2:]
            x = x[:len(c) * self.hop_size]

        # check the legnth is valid
        assert len(x) == len(c) * self.hop_size

        return x, c, *args


def main(rank, n_gpus):
    """Run training process."""
    parser = argparse.ArgumentParser(
        description="Train vec2wav2 (See detail in vec2wav2/bin/train.py)."
    )
    parser.add_argument(
        "--train-wav-scp",
        default=None,
        type=str,
        help="kaldi-style wav.scp file for training. "
    )
    parser.add_argument(
        "--train-vqidx-scp",
        default=None,
        type=str,
        help="kaldi-style feats.scp file for training. "
    )
    parser.add_argument(
        "--train-mel-scp",
        default=None,
        type=str,
        help="kaldi-style feats.scp file for training. "
    )
    parser.add_argument(
        "--train-prompt-scp",
        default=None,
        type=str,
        help="prompt scp (in this case, utt to path)"
    )
    parser.add_argument(
        "--train-segments",
        default=None,
        type=str,
        help="kaldi-style segments file for training.",
    )
    parser.add_argument(
        "--train-num-frames",
        default=None,
        type=str,
        help="kaldi-style utt2num_frames file for training.",
    )
    parser.add_argument(
        "--dev-wav-scp",
        default=None,
        type=str,
        help="kaldi-style wav.scp file for validation. "
    )
    parser.add_argument(
        "--dev-vqidx-scp",
        default=None,
        type=str,
        help="kaldi-style feats.scp file for vaidation. "
    )
    parser.add_argument(
        "--dev-mel-scp",
        default=None,
        type=str,
        help="kaldi-style feats.scp file for vaidation. "
    )
    parser.add_argument(
        "--dev-prompt-scp",
        default=None,
        type=str,
        help="prompt scp (in this case, utt to path)"
    )
    parser.add_argument(
        "--dev-segments",
        default=None,
        type=str,
        help="kaldi-style segments file for validation.",
    )
    parser.add_argument(
        "--dev-num-frames",
        default=None,
        type=str,
        help="kaldi-style utt2num_frames file for validation.",
    )
    parser.add_argument(
        "--outdir",
        type=str,
        required=True,
        help="directory to save checkpoints.",
    )
    parser.add_argument(
        "--config",
        type=str,
        required=True,
        help="yaml format configuration file.",
    )
    parser.add_argument(
        "--pretrain",
        default="",
        type=str,
        nargs="?",
        help='checkpoint file path to load pretrained params. (default="")',
    )
    parser.add_argument(
        "--resume",
        default="",
        type=str,
        nargs="?",
        help='checkpoint file path to resume training. (default="")',
    )
    parser.add_argument(
        "--verbose",
        type=int,
        default=1,
        help="logging level. higher is more logging. (default=1)",
    )
    parser.add_argument("--vq-codebook", default=None, type=str)
    # parser.add_argument("--sampling-rate", type=int)
    # parser.add_argument("--num-mels", type=int)
    # parser.add_argument("--hop-size", type=int)
    # parser.add_argument("--win-length", type=int)
    args = parser.parse_args()

    # init distributed training
    device = torch.device("cuda")
    # effective when using fixed size inputs
    # see https://discuss.pytorch.org/t/what-does-torch-backends-cudnn-benchmark-do/5936
    torch.backends.cudnn.benchmark = True
    # setup for distributed training
    # see example: https://github.com/NVIDIA/apex/tree/master/examples/simple/distributed
    if n_gpus == 1:
        assert rank == 0

    set_loglevel(args.verbose)
    
    # check directory existence
    if not os.path.exists(args.outdir):
        os.makedirs(args.outdir)

    # init process group
    logging.info("Synchronizing between all workers.")
    torch.distributed.init_process_group(backend="nccl", init_method="env://", world_size=n_gpus, rank=rank)
    torch.cuda.set_device(rank)
    logging.info("Finished init process group.")

    # load and save config
    with open(args.config) as f:
        config = yaml.load(f, Loader=yaml.Loader)
    config.update(vars(args))
    config['rank'] = rank
    config['distributed'] = True
    config['world_size'] = n_gpus
    config["version"] = vec2wav2.__version__  # add version info
    if rank == 0:
        with open(os.path.join(args.outdir, "config.yml"), "w") as f:
            yaml.dump(config, f, Dumper=yaml.Dumper)
        for key, value in config.items():
            logging.info(f"{key} = {value}")

    # get dataset
    train_dataset = AudioMelSCPDataset(
        wav_scp=args.train_wav_scp,
        vqidx_scp=args.train_vqidx_scp,
        mel_scp=args.train_mel_scp,
        prompt_scp=args.train_prompt_scp,
        utt2num_frames=args.train_num_frames,
        segments=args.train_segments,
        batch_frames=config.get("batch_frames", None),
        batch_size=config.get("batch_size", None),
        min_num_frames=config.get("min_num_frames", None),
        max_num_frames=config.get("max_num_frames", None),
        allow_cache=config.get("allow_cache", False),  # keep compatibility
        length_tolerance=config.get("length_tolerance", 2),
        prompt_fold_by_2=config.get("prompt_fold_by_2", True)
    )
    if rank == 0:
        logging.info(f"The number of training batches = {len(train_dataset)}.")
    dev_dataset = AudioMelSCPDataset(
        wav_scp=args.dev_wav_scp,
        vqidx_scp=args.dev_vqidx_scp,
        mel_scp=args.dev_mel_scp,
        prompt_scp=args.dev_prompt_scp,
        utt2num_frames=args.dev_num_frames,
        segments=args.dev_segments,
        min_num_frames=config.get("min_num_frames", None),
        max_num_frames=config.get("max_num_frames", None),
        allow_cache=config.get("allow_cache", False),  # keep compatibility
        length_tolerance=config.get("length_tolerance", 2),
        prompt_fold_by_2=config.get("prompt_fold_by_2", True)
    )
    if rank == 0:
        logging.info(f"The number of development batches = {len(dev_dataset)}.")
    dataset = {
        "train": train_dataset,
        "dev": dev_dataset,
    }

    # get data loader
    collator = Collator(
        hop_size=config["hop_size"],
        win_length=config["win_length"],
        sampling_rate=config["sampling_rate"],
        prompt_dim=config['frontend_params']['prompt_channels'],
        prompt_fold_by_2=config.get("prompt_fold_by_2", True)
    )

    sampler = {
        "train": DistributedSampler(
            dataset=dataset["train"],
            num_replicas=n_gpus,
            rank=rank,
            shuffle=True,
        ),
        "dev": DistributedSampler(
            dataset=dataset["dev"],
            num_replicas=n_gpus,
            rank=rank,
            shuffle=False,
        )}
    data_loader = {
        "train": DataLoader(
            dataset=dataset["train"],
            shuffle=False,
            collate_fn=collator,
            num_workers=config["num_workers"],
            sampler=sampler["train"],
            pin_memory=config["pin_memory"],
        ),
        "dev": DataLoader(
            dataset=dataset["dev"],
            shuffle=False,
            collate_fn=collator,
            num_workers=config["num_workers"],
            sampler=sampler["dev"],
            pin_memory=config["pin_memory"],
        ),
    }

    # define models
    generator_class = getattr(
        vec2wav2.models,
        # keep compatibility
        config.get("generator_type", "ParallelWaveGANGenerator"),
    )
    discriminator_class = getattr(
        vec2wav2.models,
        # keep compatibility
        config.get("discriminator_type", "ParallelWaveGANDiscriminator"),
    )
    model = {
        "generator": vec2wav2.models.VEC2WAV2Generator(
            vec2wav2.models.CTXVEC2WAVFrontend(config["prompt_net_type"], config["num_mels"], **config["frontend_params"]),
            generator_class(**config["generator_params"])
        ).to(device),
        "discriminator": discriminator_class(
            **config["discriminator_params"],
        ).to(device),
    }

    # define criteria
    criterion = {
        "gen_adv": GeneratorAdversarialLoss(
            # keep compatibility
            **config.get("generator_adv_loss_params", {})
        ).to(device),
        "dis_adv": DiscriminatorAdversarialLoss(
            # keep compatibility
            **config.get("discriminator_adv_loss_params", {})
        ).to(device),
    }
    if config.get("use_stft_loss", True):  # keep compatibility
        config["use_stft_loss"] = True
        criterion["stft"] = MultiResolutionSTFTLoss(**config["stft_loss_params"]).to(device)
    if config.get("use_subband_stft_loss", False):  # keep compatibility
        assert config["generator_params"]["out_channels"] > 1
        criterion["sub_stft"] = MultiResolutionSTFTLoss(**config["subband_stft_loss_params"]).to(device)
    else:
        config["use_subband_stft_loss"] = False
    if config.get("use_feat_match_loss", False):  # keep compatibility
        criterion["feat_match"] = FeatureMatchLoss(
            # keep compatibility
            **config.get("feat_match_loss_params", {}),
        ).to(device)
    else:
        config["use_feat_match_loss"] = False
    if config.get("use_mel_loss", False):  # keep compatibility
        criterion["mel"] = MelSpectrogramLoss(**config["mel_loss_params"],).to(device)
    else:
        config["use_mel_loss"] = False

    # define optimizers and schedulers
    generator_optimizer_class = getattr(
        vec2wav2.optimizers,
        # keep compatibility
        config.get("generator_optimizer_type", "RAdam"),
    )
    discriminator_optimizer_class = getattr(
        vec2wav2.optimizers,
        # keep compatibility
        config.get("discriminator_optimizer_type", "RAdam"),
    )
    optimizer = {
        "generator": generator_optimizer_class(
            model["generator"].parameters(),
            **config["generator_optimizer_params"],
        ),
        "discriminator": discriminator_optimizer_class(
            model["discriminator"].parameters(),
            **config["discriminator_optimizer_params"],
        ),
    }
    generator_scheduler_class = getattr(
        torch.optim.lr_scheduler,
        # keep compatibility
        config.get("generator_scheduler_type", "StepLR"),
    )
    discriminator_scheduler_class = getattr(
        torch.optim.lr_scheduler,
        # keep compatibility
        config.get("discriminator_scheduler_type", "StepLR"),
    )
    scheduler = {
        "generator": generator_scheduler_class(
            optimizer=optimizer["generator"],
            **config["generator_scheduler_params"],
        ),
        "discriminator": discriminator_scheduler_class(
            optimizer=optimizer["discriminator"],
            **config["discriminator_scheduler_params"],
        ),
    }
    from torch.nn.parallel import DistributedDataParallel
    model["generator"] = DistributedDataParallel(model["generator"], device_ids=[rank], find_unused_parameters=True)
    model["discriminator"] = DistributedDataParallel(model["discriminator"], device_ids=[rank], find_unused_parameters=True)

    if rank == 0:
        # show settings
        logging.info(model["generator"])
        logging.info(f"Generator has nparams: {sum([p.numel() for p in model['generator'].parameters()])}")
        logging.info(model["discriminator"])
        logging.info(f"Discriminator has nparams: {sum([p.numel() for p in model['discriminator'].parameters()])}")
        logging.info(optimizer["generator"])
        logging.info(optimizer["discriminator"])

    # define trainer
    trainer = Trainer(
        steps=0,
        epochs=0,
        data_loader=data_loader,
        sampler=sampler,
        model=model,
        criterion=criterion,
        optimizer=optimizer,
        scheduler=scheduler,
        config=config,
        device=device,
    )

    # load pretrained parameters from checkpoint
    if len(args.pretrain) != 0:
        trainer.load_checkpoint(args.pretrain, load_only_params=True)
        if rank == 0:
            logging.info(f"Successfully load parameters from {args.pretrain}.")

    # resume from checkpoint
    if len(args.resume) != 0:
        trainer.load_checkpoint(args.resume)
        if rank == 0:
            logging.info(f"Successfully resumed from {args.resume}.")

    # run training loop
    try:
        trainer.run()
    finally:
        if rank == 0:
            trainer.save_checkpoint(os.path.join(config["outdir"], f"checkpoint-{trainer.steps}steps.pkl"))
            logging.info(f"Successfully saved checkpoint @ {trainer.steps}steps.")


if __name__ == "__main__":
    assert torch.cuda.is_available(), "CPU training is not allowed."
    n_gpus = torch.cuda.device_count()
    print(f"============> using {n_gpus} GPUS")
    os.environ["MASTER_ADDR"] = "localhost"
    os.environ["MASTER_PORT"] = "8000"

    mp.spawn(
        main,
        nprocs=n_gpus,
        args=(n_gpus,)
    )