Spaces:
Sleeping
Sleeping
File size: 38,266 Bytes
05005db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# Copyright 2019 Tomoki Hayashi
# MIT License (https://opensource.org/licenses/MIT)
# Modified by Yiwei Guo, 2024
"""Train vec2wav."""
import argparse
import logging
import os
import sys
import random
from collections import defaultdict
import matplotlib
import numpy as np
import soundfile as sf
import torch
import torch.nn.functional as F
import yaml
import torch.multiprocessing as mp
from tensorboardX import SummaryWriter
from torch.utils.data import DataLoader
from tqdm import tqdm
import vec2wav2
import vec2wav2.models
import vec2wav2.optimizers
from torch.utils.data.distributed import DistributedSampler
from vec2wav2.datasets import AudioMelSCPDataset
from vec2wav2.layers import PQMF
from vec2wav2.losses import DiscriminatorAdversarialLoss
from vec2wav2.losses import FeatureMatchLoss
from vec2wav2.losses import GeneratorAdversarialLoss
from vec2wav2.losses import MelSpectrogramLoss
from vec2wav2.losses import MultiResolutionSTFTLoss
from vec2wav2.utils import crop_seq, load_feat_codebook, idx2vec
from vec2wav2.utils.espnet_utils import pad_list, make_non_pad_mask
# set to avoid matplotlib error in CLI environment
matplotlib.use("Agg")
def set_loglevel(verbose):
# set logger
if verbose > 1:
logging.basicConfig(
level=logging.DEBUG,
stream=sys.stdout,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
elif verbose > 0:
logging.basicConfig(
level=logging.INFO,
stream=sys.stdout,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
else:
logging.basicConfig(
level=logging.WARN,
stream=sys.stdout,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
logging.warning("Skip DEBUG/INFO messages")
class Trainer(object):
"""Customized trainer module for Parallel WaveGAN training."""
def __init__(
self,
steps,
epochs,
data_loader,
sampler,
model,
criterion,
optimizer,
scheduler,
config,
device=torch.device("cpu"),
):
"""Initialize trainer.
Args:
steps (int): Initial global steps.
epochs (int): Initial global epochs.
data_loader (dict): Dict of data loaders. It must contain "train" and "dev" loaders.
model (dict): Dict of models. It must contain "generator" and "discriminator" models.
criterion (dict): Dict of criteria. It must contain "stft" and "mse" criteria.
optimizer (dict): Dict of optimizers. It must contain "generator" and "discriminator" optimizers.
scheduler (dict): Dict of schedulers. It must contain "generator" and "discriminator" schedulers.
config (dict): Config dict loaded from yaml format configuration file.
device (torch.deive): Pytorch device instance.
"""
self.steps = steps
self.epochs = epochs
self.data_loader = data_loader
self.sampler = sampler
self.model = model
self.criterion = criterion
self.optimizer = optimizer
self.scheduler = scheduler
self.config = config
self.device = device
self.writer = SummaryWriter(config["outdir"])
self.finish_train = False
self.total_train_loss = defaultdict(float)
self.total_eval_loss = defaultdict(float)
# load vq codebook
feat_codebook_path = self.config["vq_codebook"]
self.feat_codebook, self.feat_codebook_numgroups = load_feat_codebook(np.load(feat_codebook_path, allow_pickle=True), device)
def run(self):
"""Run training."""
self.tqdm = tqdm(initial=self.steps, total=self.config["train_max_steps"], desc="[train]")
while True:
# train one epoch
self._train_epoch()
# check whether training is finished
if self.finish_train:
break
self.tqdm.close()
logging.info("Finished training.")
def save_checkpoint(self, checkpoint_path):
"""Save checkpoint.
Args:
checkpoint_path (str): Checkpoint path to be saved.
"""
state_dict = {
"optimizer": {
"generator": self.optimizer["generator"].state_dict(),
"discriminator": self.optimizer["discriminator"].state_dict(),
},
"scheduler": {
"generator": self.scheduler["generator"].state_dict(),
"discriminator": self.scheduler["discriminator"].state_dict(),
},
"steps": self.steps,
"epochs": self.epochs,
}
if self.config["distributed"]:
state_dict["model"] = {
"generator": self.model["generator"].module.state_dict(),
"discriminator": self.model["discriminator"].module.state_dict(),
}
else:
state_dict["model"] = {
"generator": self.model["generator"].state_dict(),
"discriminator": self.model["discriminator"].state_dict(),
}
if not os.path.exists(os.path.dirname(checkpoint_path)):
os.makedirs(os.path.dirname(checkpoint_path))
torch.save(state_dict, checkpoint_path)
def load_checkpoint(self, checkpoint_path, load_only_params=False):
"""Load checkpoint.
Args:
checkpoint_path (str): Checkpoint path to be loaded.
load_only_params (bool): Whether to load only model parameters.
"""
state_dict = torch.load(checkpoint_path, map_location="cpu")
if self.config["distributed"]:
self.model["generator"].module.load_state_dict(
state_dict["model"]["generator"]
)
self.model["discriminator"].module.load_state_dict(
state_dict["model"]["discriminator"]
)
else:
self.model["generator"].load_state_dict(state_dict["model"]["generator"])
self.model["discriminator"].load_state_dict(
state_dict["model"]["discriminator"]
)
if not load_only_params:
self.steps = state_dict["steps"]
self.epochs = state_dict["epochs"]
self.optimizer["generator"].load_state_dict(state_dict["optimizer"]["generator"])
self.optimizer["discriminator"].load_state_dict(state_dict["optimizer"]["discriminator"])
self.scheduler["generator"].load_state_dict(state_dict["scheduler"]["generator"])
self.scheduler["discriminator"].load_state_dict(state_dict["scheduler"]["discriminator"])
def _train_step(self, batch):
"""Train model one step."""
# parse batch
vqidx, mel, prompt, y, xlens, prompt_lens = batch
vqidx = vqidx.to(self.device)
mel = mel.to(self.device)
prompt = prompt.to(self.device)
vqvec = idx2vec(self.feat_codebook, vqidx, self.feat_codebook_numgroups) # (B, L, D)
y = y.unsqueeze(-2).to(self.device) # (B, 1, T)
# build mask
mask = make_non_pad_mask(xlens).to(self.device) # (B, L)
prompt_mask = make_non_pad_mask(prompt_lens).to(self.device) # (B, L_prompt)
# crop wav sequence
crop_xlen = min(self.config["crop_max_frames"], min(xlens))
x_offsets = [np.random.randint(0, l - crop_xlen + 1) for l in xlens]
crop_ylen = crop_xlen * self.config["hop_size"]
y_offsets = [o * self.config["hop_size"] for o in x_offsets]
y = crop_seq(y, y_offsets, crop_ylen)
#######################
# Generator #
#######################
if self.steps > self.config.get("generator_train_start_steps", 0):
mel_, _, y_ = self.model["generator"](vqvec, prompt, mask, prompt_mask, crop_xlen, x_offsets) # (B, L, 80), (B, C, T)
# initialize
gen_loss, aux_loss = 0.0, 0.0
# frontend mel prediction loss
if self.steps <= self.config.get("frontend_mel_prediction_stop_steps", 0):
frontend_mel_pred_loss = F.l1_loss(torch.masked_select(mel, mask.unsqueeze(-1)),
torch.masked_select(mel_, mask.unsqueeze(-1)))
self.total_train_loss["train/frontend_mel_pred_loss"] += frontend_mel_pred_loss.item()
gen_loss += self.config["lambda_frontend_mel_prediction"] * frontend_mel_pred_loss
# multi-resolution sfft loss
if self.config["use_stft_loss"]:
sc_loss, mag_loss = self.criterion["stft"](y_, y)
aux_loss += sc_loss + mag_loss
self.total_train_loss["train/spectral_convergence_loss"] += sc_loss.item()
self.total_train_loss["train/log_stft_magnitude_loss"] += mag_loss.item()
# subband multi-resolution stft loss
if self.config["use_subband_stft_loss"]:
aux_loss *= 0.5 # for balancing with subband stft loss
y_mb = self.criterion["pqmf"].analysis(y)
y_mb_ = self.criterion["pqmf"].analysis(y_)
sub_sc_loss, sub_mag_loss = self.criterion["sub_stft"](y_mb_, y_mb)
aux_loss += 0.5 * (sub_sc_loss + sub_mag_loss)
self.total_train_loss["train/sub_spectral_convergence_loss"] += sub_sc_loss.item()
self.total_train_loss["train/sub_log_stft_magnitude_loss"] += sub_mag_loss.item()
# mel spectrogram loss
if self.config["use_mel_loss"]:
mel_loss = self.criterion["mel"](y_, y)
aux_loss += mel_loss
self.total_train_loss["train/mel_loss"] += mel_loss.item()
# weighting aux loss
gen_loss += self.config.get("lambda_aux", 1.0) * aux_loss
# adversarial loss
if self.steps > self.config["discriminator_train_start_steps"]:
p_ = self.model["discriminator"](y_)
adv_loss = self.criterion["gen_adv"](p_)
self.total_train_loss["train/adversarial_loss"] += adv_loss.item()
# feature matching loss
if self.config["use_feat_match_loss"]:
# no need to track gradients
with torch.no_grad():
p = self.model["discriminator"](y)
fm_loss = self.criterion["feat_match"](p_, p)
self.total_train_loss["train/feature_matching_loss"] += fm_loss.item()
adv_loss += self.config["lambda_feat_match"] * fm_loss
# add adversarial loss to generator loss
gen_loss += self.config["lambda_adv"] * adv_loss
self.total_train_loss["train/generator_loss"] += gen_loss.item()
# update generator
self.optimizer["generator"].zero_grad()
gen_loss.backward()
if self.config["generator_grad_norm"] > 0:
torch.nn.utils.clip_grad_norm_(
self.model["generator"].parameters(),
self.config["generator_grad_norm"],
)
self.optimizer["generator"].step()
self.scheduler["generator"].step()
#######################
# Discriminator #
#######################
if self.steps > self.config["discriminator_train_start_steps"]:
# re-compute y_ which leads better quality
with torch.no_grad():
# logging.info(f"{vqvec.shape, prompt.shape, mask.shape, prompt_mask.shape}")
_, _, y_ = self.model["generator"](vqvec, prompt, mask, prompt_mask, crop_xlen, x_offsets) # (B, L, 80), (B, C, T)
if self.config["generator_params"]["out_channels"] > 1:
y_ = self.criterion["pqmf"].synthesis(y_)
# discriminator loss
p = self.model["discriminator"](y)
p_ = self.model["discriminator"](y_.detach())
real_loss, fake_loss = self.criterion["dis_adv"](p_, p)
dis_loss = real_loss + fake_loss
self.total_train_loss["train/real_loss"] += real_loss.item()
self.total_train_loss["train/fake_loss"] += fake_loss.item()
self.total_train_loss["train/discriminator_loss"] += dis_loss.item()
# update discriminator
self.optimizer["discriminator"].zero_grad()
dis_loss.backward()
if self.config["discriminator_grad_norm"] > 0:
torch.nn.utils.clip_grad_norm_(
self.model["discriminator"].parameters(),
self.config["discriminator_grad_norm"],
)
self.optimizer["discriminator"].step()
self.scheduler["discriminator"].step()
# update counts
self.steps += 1
self.tqdm.update(1)
self._check_train_finish()
def _train_epoch(self):
"""Train model one epoch."""
for train_steps_per_epoch, batch in enumerate(self.data_loader["train"], 1):
# train one step
self._train_step(batch)
# check interval
if self.config["rank"] == 0:
self._check_log_interval()
self._check_eval_interval()
self._check_save_interval()
# check whether training is finished
if self.finish_train:
return
# update
self.epochs += 1
self.train_steps_per_epoch = train_steps_per_epoch
logging.info(
f"(Steps: {self.steps}) Finished {self.epochs} epoch training "
f"({self.train_steps_per_epoch} steps per epoch)."
)
# needed for shuffle in distributed training
if self.config["distributed"]:
self.sampler["train"].set_epoch(self.epochs)
@torch.no_grad()
def _eval_step(self, batch):
"""Evaluate model one step."""
# parse batch
vqidx, mel, prompt, y, xlens, prompt_lens = batch
vqidx = vqidx.to(self.device).long()
mel = mel.to(self.device)
prompt = prompt.to(self.device)
vqvec = idx2vec(self.feat_codebook, vqidx, self.feat_codebook_numgroups)
y = y.unsqueeze(-2).to(self.device) # (B, 1, T)
# build mask
mask = make_non_pad_mask(xlens).to(self.device) # (B, L)
prompt_mask = make_non_pad_mask(prompt_lens).to(self.device) # (B, L_prompt)
#######################
# Generator #
#######################
mel_, _, y_ = self.model["generator"](vqvec, prompt, mask, prompt_mask) # (B, L, 80), (B, C, T)
# reconstruct the signal from multi-band signal
if self.config["generator_params"]["out_channels"] > 1:
y_mb_ = y_
y_ = self.criterion["pqmf"].synthesis(y_mb_)
# initialize
gen_loss = 0.0
aux_loss = 0.0
# frontend mel prediction loss
frontend_mel_pred_loss = F.l1_loss(torch.masked_select(mel, mask.unsqueeze(-1)),
torch.masked_select(mel_, mask.unsqueeze(-1)))
self.total_eval_loss["eval/frontend_mel_pred_loss"] += frontend_mel_pred_loss.item()
gen_loss += self.config["lambda_frontend_mel_prediction"] * frontend_mel_pred_loss
# multi-resolution stft loss
if self.config["use_stft_loss"]:
sc_loss, mag_loss = self.criterion["stft"](y_, y)
aux_loss += sc_loss + mag_loss
self.total_eval_loss["eval/spectral_convergence_loss"] += sc_loss.item()
self.total_eval_loss["eval/log_stft_magnitude_loss"] += mag_loss.item()
# subband multi-resolution stft loss
if self.config.get("use_subband_stft_loss", False):
aux_loss *= 0.5 # for balancing with subband stft loss
y_mb = self.criterion["pqmf"].analysis(y)
sub_sc_loss, sub_mag_loss = self.criterion["sub_stft"](y_mb_, y_mb)
self.total_eval_loss["eval/sub_spectral_convergence_loss"] += sub_sc_loss.item()
self.total_eval_loss["eval/sub_log_stft_magnitude_loss"] += sub_mag_loss.item()
aux_loss += 0.5 * (sub_sc_loss + sub_mag_loss)
# mel spectrogram loss
if self.config["use_mel_loss"]:
mel_loss = self.criterion["mel"](y_, y)
aux_loss += mel_loss
self.total_eval_loss["eval/mel_loss"] += mel_loss.item()
# weighting stft loss
gen_loss += aux_loss * self.config.get("lambda_aux", 1.0)
# adversarial loss
p_ = self.model["discriminator"](y_)
adv_loss = self.criterion["gen_adv"](p_)
gen_loss += self.config["lambda_adv"] * adv_loss
# feature matching loss
if self.config["use_feat_match_loss"]:
p = self.model["discriminator"](y)
fm_loss = self.criterion["feat_match"](p_, p)
self.total_eval_loss["eval/feature_matching_loss"] += fm_loss.item()
gen_loss += (
self.config["lambda_adv"] * self.config["lambda_feat_match"] * fm_loss
)
#######################
# Discriminator #
#######################
p = self.model["discriminator"](y)
p_ = self.model["discriminator"](y_)
# discriminator loss
real_loss, fake_loss = self.criterion["dis_adv"](p_, p)
dis_loss = real_loss + fake_loss
# add to total eval loss
self.total_eval_loss["eval/adversarial_loss"] += adv_loss.item()
self.total_eval_loss["eval/generator_loss"] += gen_loss.item()
self.total_eval_loss["eval/real_loss"] += real_loss.item()
self.total_eval_loss["eval/fake_loss"] += fake_loss.item()
self.total_eval_loss["eval/discriminator_loss"] += dis_loss.item()
def _eval_epoch(self):
"""Evaluate model one epoch."""
logging.info(f"(Steps: {self.steps}) Start evaluation.")
# change mode
for key in self.model.keys():
self.model[key].eval()
# calculate loss for each batch
for eval_steps_per_epoch, batch in enumerate(tqdm(self.data_loader["dev"], desc="[eval]"), 1):
# eval one step
self._eval_step(batch)
logging.info(
f"(Steps: {self.steps}) Finished evaluation "
f"({eval_steps_per_epoch} steps per epoch)."
)
# average loss
for key in self.total_eval_loss.keys():
self.total_eval_loss[key] /= eval_steps_per_epoch
logging.info(f"(Steps: {self.steps}) {key} = {self.total_eval_loss[key]:.4f}.")
# record
self._write_to_tensorboard(self.total_eval_loss)
# reset
self.total_eval_loss = defaultdict(float)
# restore mode
for key in self.model.keys():
self.model[key].train()
def _write_to_tensorboard(self, loss):
"""Write to tensorboard."""
for key, value in loss.items():
self.writer.add_scalar(key, value, self.steps)
def _check_save_interval(self):
if self.steps % self.config["save_interval_steps"] == 0:
self.save_checkpoint(os.path.join(self.config["outdir"],
f"checkpoint-{self.steps}steps.pkl"))
logging.info(f"Successfully saved checkpoint @ {self.steps} steps.")
def _check_eval_interval(self):
if self.steps % self.config["eval_interval_steps"] == 0:
self._eval_epoch()
def _check_log_interval(self):
if self.steps % self.config["log_interval_steps"] == 0:
for key in self.total_train_loss.keys():
self.total_train_loss[key] /= self.config["log_interval_steps"]
logging.info(f"(Steps: {self.steps}) {key} = {self.total_train_loss[key]:.4f}.")
self._write_to_tensorboard(self.total_train_loss)
# reset
self.total_train_loss = defaultdict(float)
def _check_train_finish(self):
if self.steps >= self.config["train_max_steps"]:
self.finish_train = True
class Collator(object):
"""Customized collator for Pytorch DataLoader in training."""
def __init__(
self,
hop_size=256,
win_length=1024,
sampling_rate=16000,
prompt_dim=1024,
prompt_fold_by_2=False
):
"""Initialize customized collator for PyTorch DataLoader.
Args:
hop_size (int): Hop size of features, in sampling points.
win_length (int): window length of features.
sampling_rate (int): sampling rate of waveform data
prompt_dim (int): number of prompt embedding dimensions
"""
self.hop_size = hop_size
self.win_length = win_length
self.sampling_rate = sampling_rate
self.prompt_dim = prompt_dim
if prompt_fold_by_2:
self.prompt_len_factor = 2
else:
self.prompt_len_factor = 1
def construct_prompt(self, mel_lens):
prompt_lens = [random.randint(int(l / (3 * self.prompt_len_factor)), int(l / (2 * self.prompt_len_factor))) for l in mel_lens]
prompt_starts = []
is_from_start = []
for ml, pl in zip(mel_lens, prompt_lens):
if random.random() > 0.5:
# from start
prompt_start = random.randint(0, 1 * self.sampling_rate // (self.hop_size * self.prompt_len_factor))
is_from_start.append(True)
else:
# from ending
prompt_start = random.randint((ml - 1 * self.sampling_rate // self.hop_size) // self.prompt_len_factor, ml // self.prompt_len_factor) - pl
is_from_start.append(False)
prompt_starts.append(prompt_start)
return prompt_lens, prompt_starts, is_from_start
def __call__(self, batch):
"""Convert into batch tensors.
Args:
batch (list): list of tuple of the pair of audio and features.
This collator will automatically determine the prompt segment (acoustic context) for each utterance.
The prompt is cut off from the current utterance, ranging from one third to half of the original utterance.
The prompt can be cut from either the starting or the ending of the utterance, within 1 second margin.
The other features include 2-dim VQ features (2 is the number of groups), and D-dim prompts (e.g. WavLM features)
Returns:
Tensor ys: waveform batch (B, T).
Tensors vqs, mels: Auxiliary feature batch (B, C, T'), where T' = T / hop_size.
Tensor prompts: prompt feature batch (B, C, T'')
List c_lengths, prompt_lengths: list of lengths
"""
batch = batch[0]
# check length
batch = [self._adjust_length(*b) for b in batch]
ys, vqs, mels, prompts_old = list(map(list, zip(*batch))) # [(a,b), (c,d)] -> [a, c], [b, d]
batch_size = len(vqs)
prompt_lengths, prompt_starts, is_from_starts = self.construct_prompt([len(m) for m in mels])
c_lengths = []
prompts = torch.zeros(batch_size, max(prompt_lengths), self.prompt_dim)
for i in range(batch_size):
prompts[i, :prompt_lengths[i]] = torch.tensor(prompts_old[i][prompt_starts[i]:prompt_starts[i]+prompt_lengths[i], :])
if is_from_starts[i]:
start_idx = (prompt_starts[i] + prompt_lengths[i])*self.prompt_len_factor
mels[i] = mels[i][start_idx:]
vqs[i] = vqs[i][start_idx:]
ys[i] = ys[i][start_idx * self.hop_size: ]
else:
end_idx = prompt_starts[i]*self.prompt_len_factor
mels[i] = mels[i][:end_idx]
vqs[i] = vqs[i][:end_idx]
ys[i] = ys[i][:end_idx * self.hop_size]
c_lengths.append(len(mels[i]))
vqs = pad_list([torch.tensor(c) for c in vqs], pad_value=0) # (B, L, Groups)
vqs = vqs.long()
mels = pad_list([torch.tensor(c) for c in mels], pad_value=0) # (B, L, 80)
ys = pad_list([torch.tensor(y, dtype=torch.float) for y in ys], pad_value=0)[:, :mels.size(1) * self.hop_size] # (B, T)
assert ys.size(1) == mels.size(1) * self.hop_size == vqs.size(1) * self.hop_size
return vqs, mels, prompts, ys, c_lengths, prompt_lengths
def _adjust_length(self, x, c, *args):
"""Adjust the audio and feature lengths.
Note:
Basically we assume that the length of x and c are adjusted
through preprocessing stage, but if we use other library processed
features, this process will be needed.
"""
if len(x) > len(c) * self.hop_size:
x = x[(self.win_length - self.hop_size) // 2:]
x = x[:len(c) * self.hop_size]
# check the legnth is valid
assert len(x) == len(c) * self.hop_size
return x, c, *args
def main(rank, n_gpus):
"""Run training process."""
parser = argparse.ArgumentParser(
description="Train vec2wav2 (See detail in vec2wav2/bin/train.py)."
)
parser.add_argument(
"--train-wav-scp",
default=None,
type=str,
help="kaldi-style wav.scp file for training. "
)
parser.add_argument(
"--train-vqidx-scp",
default=None,
type=str,
help="kaldi-style feats.scp file for training. "
)
parser.add_argument(
"--train-mel-scp",
default=None,
type=str,
help="kaldi-style feats.scp file for training. "
)
parser.add_argument(
"--train-prompt-scp",
default=None,
type=str,
help="prompt scp (in this case, utt to path)"
)
parser.add_argument(
"--train-segments",
default=None,
type=str,
help="kaldi-style segments file for training.",
)
parser.add_argument(
"--train-num-frames",
default=None,
type=str,
help="kaldi-style utt2num_frames file for training.",
)
parser.add_argument(
"--dev-wav-scp",
default=None,
type=str,
help="kaldi-style wav.scp file for validation. "
)
parser.add_argument(
"--dev-vqidx-scp",
default=None,
type=str,
help="kaldi-style feats.scp file for vaidation. "
)
parser.add_argument(
"--dev-mel-scp",
default=None,
type=str,
help="kaldi-style feats.scp file for vaidation. "
)
parser.add_argument(
"--dev-prompt-scp",
default=None,
type=str,
help="prompt scp (in this case, utt to path)"
)
parser.add_argument(
"--dev-segments",
default=None,
type=str,
help="kaldi-style segments file for validation.",
)
parser.add_argument(
"--dev-num-frames",
default=None,
type=str,
help="kaldi-style utt2num_frames file for validation.",
)
parser.add_argument(
"--outdir",
type=str,
required=True,
help="directory to save checkpoints.",
)
parser.add_argument(
"--config",
type=str,
required=True,
help="yaml format configuration file.",
)
parser.add_argument(
"--pretrain",
default="",
type=str,
nargs="?",
help='checkpoint file path to load pretrained params. (default="")',
)
parser.add_argument(
"--resume",
default="",
type=str,
nargs="?",
help='checkpoint file path to resume training. (default="")',
)
parser.add_argument(
"--verbose",
type=int,
default=1,
help="logging level. higher is more logging. (default=1)",
)
parser.add_argument("--vq-codebook", default=None, type=str)
# parser.add_argument("--sampling-rate", type=int)
# parser.add_argument("--num-mels", type=int)
# parser.add_argument("--hop-size", type=int)
# parser.add_argument("--win-length", type=int)
args = parser.parse_args()
# init distributed training
device = torch.device("cuda")
# effective when using fixed size inputs
# see https://discuss.pytorch.org/t/what-does-torch-backends-cudnn-benchmark-do/5936
torch.backends.cudnn.benchmark = True
# setup for distributed training
# see example: https://github.com/NVIDIA/apex/tree/master/examples/simple/distributed
if n_gpus == 1:
assert rank == 0
set_loglevel(args.verbose)
# check directory existence
if not os.path.exists(args.outdir):
os.makedirs(args.outdir)
# init process group
logging.info("Synchronizing between all workers.")
torch.distributed.init_process_group(backend="nccl", init_method="env://", world_size=n_gpus, rank=rank)
torch.cuda.set_device(rank)
logging.info("Finished init process group.")
# load and save config
with open(args.config) as f:
config = yaml.load(f, Loader=yaml.Loader)
config.update(vars(args))
config['rank'] = rank
config['distributed'] = True
config['world_size'] = n_gpus
config["version"] = vec2wav2.__version__ # add version info
if rank == 0:
with open(os.path.join(args.outdir, "config.yml"), "w") as f:
yaml.dump(config, f, Dumper=yaml.Dumper)
for key, value in config.items():
logging.info(f"{key} = {value}")
# get dataset
train_dataset = AudioMelSCPDataset(
wav_scp=args.train_wav_scp,
vqidx_scp=args.train_vqidx_scp,
mel_scp=args.train_mel_scp,
prompt_scp=args.train_prompt_scp,
utt2num_frames=args.train_num_frames,
segments=args.train_segments,
batch_frames=config.get("batch_frames", None),
batch_size=config.get("batch_size", None),
min_num_frames=config.get("min_num_frames", None),
max_num_frames=config.get("max_num_frames", None),
allow_cache=config.get("allow_cache", False), # keep compatibility
length_tolerance=config.get("length_tolerance", 2),
prompt_fold_by_2=config.get("prompt_fold_by_2", True)
)
if rank == 0:
logging.info(f"The number of training batches = {len(train_dataset)}.")
dev_dataset = AudioMelSCPDataset(
wav_scp=args.dev_wav_scp,
vqidx_scp=args.dev_vqidx_scp,
mel_scp=args.dev_mel_scp,
prompt_scp=args.dev_prompt_scp,
utt2num_frames=args.dev_num_frames,
segments=args.dev_segments,
min_num_frames=config.get("min_num_frames", None),
max_num_frames=config.get("max_num_frames", None),
allow_cache=config.get("allow_cache", False), # keep compatibility
length_tolerance=config.get("length_tolerance", 2),
prompt_fold_by_2=config.get("prompt_fold_by_2", True)
)
if rank == 0:
logging.info(f"The number of development batches = {len(dev_dataset)}.")
dataset = {
"train": train_dataset,
"dev": dev_dataset,
}
# get data loader
collator = Collator(
hop_size=config["hop_size"],
win_length=config["win_length"],
sampling_rate=config["sampling_rate"],
prompt_dim=config['frontend_params']['prompt_channels'],
prompt_fold_by_2=config.get("prompt_fold_by_2", True)
)
sampler = {
"train": DistributedSampler(
dataset=dataset["train"],
num_replicas=n_gpus,
rank=rank,
shuffle=True,
),
"dev": DistributedSampler(
dataset=dataset["dev"],
num_replicas=n_gpus,
rank=rank,
shuffle=False,
)}
data_loader = {
"train": DataLoader(
dataset=dataset["train"],
shuffle=False,
collate_fn=collator,
num_workers=config["num_workers"],
sampler=sampler["train"],
pin_memory=config["pin_memory"],
),
"dev": DataLoader(
dataset=dataset["dev"],
shuffle=False,
collate_fn=collator,
num_workers=config["num_workers"],
sampler=sampler["dev"],
pin_memory=config["pin_memory"],
),
}
# define models
generator_class = getattr(
vec2wav2.models,
# keep compatibility
config.get("generator_type", "ParallelWaveGANGenerator"),
)
discriminator_class = getattr(
vec2wav2.models,
# keep compatibility
config.get("discriminator_type", "ParallelWaveGANDiscriminator"),
)
model = {
"generator": vec2wav2.models.VEC2WAV2Generator(
vec2wav2.models.CTXVEC2WAVFrontend(config["prompt_net_type"], config["num_mels"], **config["frontend_params"]),
generator_class(**config["generator_params"])
).to(device),
"discriminator": discriminator_class(
**config["discriminator_params"],
).to(device),
}
# define criteria
criterion = {
"gen_adv": GeneratorAdversarialLoss(
# keep compatibility
**config.get("generator_adv_loss_params", {})
).to(device),
"dis_adv": DiscriminatorAdversarialLoss(
# keep compatibility
**config.get("discriminator_adv_loss_params", {})
).to(device),
}
if config.get("use_stft_loss", True): # keep compatibility
config["use_stft_loss"] = True
criterion["stft"] = MultiResolutionSTFTLoss(**config["stft_loss_params"]).to(device)
if config.get("use_subband_stft_loss", False): # keep compatibility
assert config["generator_params"]["out_channels"] > 1
criterion["sub_stft"] = MultiResolutionSTFTLoss(**config["subband_stft_loss_params"]).to(device)
else:
config["use_subband_stft_loss"] = False
if config.get("use_feat_match_loss", False): # keep compatibility
criterion["feat_match"] = FeatureMatchLoss(
# keep compatibility
**config.get("feat_match_loss_params", {}),
).to(device)
else:
config["use_feat_match_loss"] = False
if config.get("use_mel_loss", False): # keep compatibility
criterion["mel"] = MelSpectrogramLoss(**config["mel_loss_params"],).to(device)
else:
config["use_mel_loss"] = False
# define optimizers and schedulers
generator_optimizer_class = getattr(
vec2wav2.optimizers,
# keep compatibility
config.get("generator_optimizer_type", "RAdam"),
)
discriminator_optimizer_class = getattr(
vec2wav2.optimizers,
# keep compatibility
config.get("discriminator_optimizer_type", "RAdam"),
)
optimizer = {
"generator": generator_optimizer_class(
model["generator"].parameters(),
**config["generator_optimizer_params"],
),
"discriminator": discriminator_optimizer_class(
model["discriminator"].parameters(),
**config["discriminator_optimizer_params"],
),
}
generator_scheduler_class = getattr(
torch.optim.lr_scheduler,
# keep compatibility
config.get("generator_scheduler_type", "StepLR"),
)
discriminator_scheduler_class = getattr(
torch.optim.lr_scheduler,
# keep compatibility
config.get("discriminator_scheduler_type", "StepLR"),
)
scheduler = {
"generator": generator_scheduler_class(
optimizer=optimizer["generator"],
**config["generator_scheduler_params"],
),
"discriminator": discriminator_scheduler_class(
optimizer=optimizer["discriminator"],
**config["discriminator_scheduler_params"],
),
}
from torch.nn.parallel import DistributedDataParallel
model["generator"] = DistributedDataParallel(model["generator"], device_ids=[rank], find_unused_parameters=True)
model["discriminator"] = DistributedDataParallel(model["discriminator"], device_ids=[rank], find_unused_parameters=True)
if rank == 0:
# show settings
logging.info(model["generator"])
logging.info(f"Generator has nparams: {sum([p.numel() for p in model['generator'].parameters()])}")
logging.info(model["discriminator"])
logging.info(f"Discriminator has nparams: {sum([p.numel() for p in model['discriminator'].parameters()])}")
logging.info(optimizer["generator"])
logging.info(optimizer["discriminator"])
# define trainer
trainer = Trainer(
steps=0,
epochs=0,
data_loader=data_loader,
sampler=sampler,
model=model,
criterion=criterion,
optimizer=optimizer,
scheduler=scheduler,
config=config,
device=device,
)
# load pretrained parameters from checkpoint
if len(args.pretrain) != 0:
trainer.load_checkpoint(args.pretrain, load_only_params=True)
if rank == 0:
logging.info(f"Successfully load parameters from {args.pretrain}.")
# resume from checkpoint
if len(args.resume) != 0:
trainer.load_checkpoint(args.resume)
if rank == 0:
logging.info(f"Successfully resumed from {args.resume}.")
# run training loop
try:
trainer.run()
finally:
if rank == 0:
trainer.save_checkpoint(os.path.join(config["outdir"], f"checkpoint-{trainer.steps}steps.pkl"))
logging.info(f"Successfully saved checkpoint @ {trainer.steps}steps.")
if __name__ == "__main__":
assert torch.cuda.is_available(), "CPU training is not allowed."
n_gpus = torch.cuda.device_count()
print(f"============> using {n_gpus} GPUS")
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = "8000"
mp.spawn(
main,
nprocs=n_gpus,
args=(n_gpus,)
)
|