Spaces:
Sleeping
Sleeping
File size: 10,847 Bytes
05005db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
# -*- coding: utf-8 -*-
# Copyright 2019 Tomoki Hayashi
# MIT License (https://opensource.org/licenses/MIT)
# Modified by Yiwei Guo, 2024
"""Dataset modules based on kaldi-style scp files."""
import logging
import random
import copy
from multiprocessing import Manager
import kaldiio
import numpy as np
from torch.utils.data import Dataset
from tqdm import tqdm
from vec2wav2.utils import HDF5ScpLoader
from vec2wav2.utils import NpyScpLoader
def _get_feats_scp_loader(feats_scp):
# read the first line of feats.scp file
with open(feats_scp) as f:
key, value = f.readlines()[0].replace("\n", "").split()
# check scp type
if ":" in value:
value_1, value_2 = value.split(":")
if value_1.endswith(".ark"):
# kaldi-ark case: utt_id_1 /path/to/utt_id_1.ark:index
return kaldiio.load_scp(feats_scp)
elif value_1.endswith(".h5"):
# hdf5 case with path in hdf5: utt_id_1 /path/to/utt_id_1.h5:feats
return HDF5ScpLoader(feats_scp)
else:
raise ValueError("Not supported feats.scp type.")
else:
if value.endswith(".h5"):
# hdf5 case without path in hdf5: utt_id_1 /path/to/utt_id_1.h5
return HDF5ScpLoader(feats_scp)
elif value.endswith(".npy"):
# npy case: utt_id_1 /path/to/utt_id_1.npy
return NpyScpLoader(feats_scp)
else:
raise ValueError("Not supported feats.scp type.")
class AudioMelSCPDataset(Dataset):
"""PyTorch compatible audio and feat dataset based on kaldi-stype scp files."""
def __init__(
self,
wav_scp,
vqidx_scp,
mel_scp,
prompt_scp,
utt2num_frames=None,
segments=None,
batch_frames=None,
batch_size=None,
min_num_frames=None,
max_num_frames=None,
return_utt_id=False,
return_sampling_rate=False,
allow_cache=False,
length_tolerance=2,
prompt_fold_by_2=True
):
"""Initialize dataset.
Args:
wav_scp (str): Kaldi-style wav.scp file.
vqidx_scp (str): Kaldi-style fests.scp file.
mel_scp (str): Kaldi-style fests.scp file.
segments (str): Kaldi-style segments file.
min_num_frames (int): Threshold to remove short feature files.
max_num_frames (int): Threshold to remove long feature files.
return_utt_id (bool): Whether to return utterance id.
return_sampling_rate (bool): Whether to return sampling rate.
allow_cache (bool): Whether to allow cache of the loaded files.
prompt_fold_by_2 (bool): if true, then prompt have half the length of vqidx sequence.
"""
# load scp as lazy dict
self.audio_loader = kaldiio.load_scp(wav_scp, segments=segments)
self.vqidx_loader = _get_feats_scp_loader(vqidx_scp)
self.mel_loader = _get_feats_scp_loader(mel_scp)
self.prompt_loader = _get_feats_scp_loader(prompt_scp)
self.utt_ids = list(self.mel_loader.keys())
self.return_utt_id = return_utt_id
self.return_sampling_rate = return_sampling_rate
self.allow_cache = allow_cache
utt2num_frames_loader = None
if utt2num_frames is not None:
with open(utt2num_frames, 'r') as f:
utt2num_frames_loader = dict([(x.split()[0], int(x.split()[1])) for x in f.readlines()])
else:
utt2num_frames_loader = dict([(k, mel.shape[0]) for k, mel in self.mel_loader.items()])
self.utt2num_frames_loader = utt2num_frames_loader
# filter by threshold
if (min_num_frames or max_num_frames) is not None:
mel_lengths = [utt2num_frames_loader[key] for key in self.utt_ids]
idxs = [
idx
for idx in range(len(self.utt_ids))
if (min_num_frames and mel_lengths[idx] >= min_num_frames) and (max_num_frames and mel_lengths[idx] <= max_num_frames)
]
if len(self.utt_ids) != len(idxs):
logging.warning(
f"Some files are filtered by mel length threshold "
f"({len(self.utt_ids)} -> {len(idxs)})."
)
self.utt_ids = [self.utt_ids[idx] for idx in idxs]
# batchify
if batch_frames is not None:
self.batches = self.batchify(utt2num_frames_loader, batch_frames=batch_frames)
elif batch_size is not None:
self.batches = self.batchify(utt2num_frames_loader, batch_size=batch_size)
else:
self.batches = [[utt_id] for utt_id in self.utt_ids]
if allow_cache:
# NOTE(kan-bayashi): Manager is need to share memory in dataloader with num_workers > 0
self.manager = Manager()
self.caches = self.manager.dict()
self.length_tolerance = length_tolerance
if prompt_fold_by_2:
self.prompt_len_factor = 2
else:
self.prompt_len_factor = 1
def batchify(self, utt2num_frames_loader, batch_frames=None, batch_size=None, min_batch_size=1, drop_last=True):
assert batch_size is None or batch_size > min_batch_size
batches = []
batch = []
accum_num_frames = 0
utt_ids_set = set(self.utt_ids)
for utt_id, mel_length in tqdm(sorted(list(utt2num_frames_loader.items()), key=lambda x: x[1], reverse=True)):
if utt_id not in utt_ids_set:
continue
if (batch_frames is not None and accum_num_frames + mel_length > batch_frames and len(batch) > min_batch_size) or (batch_size is not None and len(batch) == batch_size):
batches.append(batch)
batch = []
accum_num_frames = 0
batch.append(utt_id)
accum_num_frames += mel_length
if len(batch) > min_batch_size and not drop_last:
batches.append(batch)
return batches
def __getitem__(self, idx):
"""Get specified idx items.
Args:
idx (int): Index of the item.
Returns:
str: Utterance id (only in return_utt_id = True).
ndarray or tuple: Audio signal (T,) or (w/ sampling rate if return_sampling_rate = True).
ndarrays: Features (T', C).
"""
batch = self.batches[idx]
batch_items = []
for utt_id in batch:
if self.allow_cache and self.caches.get(utt_id) is not None:
items = self.caches[utt_id]
else:
fs, audio = self.audio_loader[utt_id]
mel = self.mel_loader[utt_id]
prompt = self.prompt_loader[utt_id]
vqidx = self.vqidx_loader[utt_id]
min_len = min(len(mel), len(vqidx), len(prompt)*self.prompt_len_factor)
assert ((abs(len(mel) - min_len) <= self.length_tolerance) and
(abs(len(vqidx) - min_len) <= self.length_tolerance) and
(abs(len(prompt)*self.prompt_len_factor - min_len) <= self.length_tolerance)), \
f"Audio feature lengths difference exceeds length tolerance for {utt_id}"
mel, vqidx, prompt = mel[:min_len], vqidx[:min_len], prompt[:min_len//self.prompt_len_factor]
# normalize audio signal to be [-1, 1]
audio = audio.astype(np.float32)
audio /= 1 << (16 - 1) # assume that wav is PCM 16 bit
if self.return_sampling_rate:
audio = (audio, fs)
if self.return_utt_id:
items = utt_id, audio, vqidx, mel, prompt
else:
items = audio, vqidx, mel, prompt
if self.allow_cache:
self.caches[utt_id] = items
batch_items.append(items)
return batch_items
def __len__(self):
"""Return dataset length.
Returns:
int: The length of dataset.
"""
return len(self.batches)
class MelSCPDataset(Dataset):
"""PyTorch compatible feat dataset based on kaldi-stype scp files."""
def __init__(
self,
vqidx_scp,
prompt_scp,
return_utt_id=False,
allow_cache=False,
):
"""Initialize dataset.
Args:
vqidx_scp (str): Kaldi-style fests.scp file.
prompt_scp (str): Kaldi-style scp file. In this file, every utt is associated with its prompt's mel-spectrogram.
min_num_frames (int): Threshold to remove short feature files.
max_num_frames (int): Threshold to remove long feature files.
return_utt_id (bool): Whether to return utterance id.
allow_cache (bool): Whether to allow cache of the loaded files.
"""
# load scp as lazy dict
vqidx_loader = _get_feats_scp_loader(vqidx_scp)
self.prompt_loader = _get_feats_scp_loader(prompt_scp)
# self.prompt_loader = dict()
# with open(prompt_scp, 'r') as fr:
# for line in fr.readlines():
# terms = line.strip().split()
# self.prompt_loader[terms[0]] = terms[1]
vqidx_keys = list(set(self.prompt_loader.keys()) & set(vqidx_loader.keys()))
# NOTE: this dataset does not apply filtering, because it is usually used for decoding
self.vqidx_loader = vqidx_loader
self.utt_ids = vqidx_keys
self.return_utt_id = return_utt_id
self.allow_cache = allow_cache
if allow_cache:
# NOTE(kan-bayashi): Manager is need to share memory in dataloader with num_workers > 0
self.manager = Manager()
self.caches = self.manager.list()
self.caches += [() for _ in range(len(self.utt_ids))]
def __getitem__(self, idx):
"""Get specified idx items.
Args:
idx (int): Index of the item.
Returns:
str: Utterance id (only in return_utt_id = True).
ndarray: Feature (T', C).
"""
if self.allow_cache and len(self.caches[idx]) != 0:
return self.caches[idx]
utt_id = self.utt_ids[idx]
vqidx = self.vqidx_loader[utt_id].astype(int)
# prompt = torch.load(self.prompt_loader[utt_id]).float().numpy()
prompt = self.prompt_loader[utt_id]
if self.return_utt_id:
items = utt_id, vqidx, prompt
else:
items = vqidx, prompt
if self.allow_cache:
self.caches[idx] = items
return items
def __len__(self):
"""Return dataset length.
Returns:
int: The length of dataset.
"""
return len(self.utt_ids)
|