Spaces:
Sleeping
Sleeping
File size: 11,515 Bytes
05005db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
# -*- coding: utf-8 -*-
"""
Created on Sat Aug 21 16:57:31 2021.
@author: Keqi Deng (UCAS)
"""
from espnet.nets.pytorch_backend.transformer.layer_norm import LayerNorm
import torch
from torch import nn
class ContextualBlockEncoderLayer(nn.Module):
"""Contexutal Block Encoder layer module.
Args:
size (int): Input dimension.
self_attn (torch.nn.Module): Self-attention module instance.
`MultiHeadedAttention` or `RelPositionMultiHeadedAttention` instance
can be used as the argument.
feed_forward (torch.nn.Module): Feed-forward module instance.
`PositionwiseFeedForward`, `MultiLayeredConv1d`, or `Conv1dLinear` instance
can be used as the argument.
feed_forward_macaron (torch.nn.Module): Additional feed-forward module instance.
`PositionwiseFeedForward`, `MultiLayeredConv1d`, or `Conv1dLinear` instance
can be used as the argument.
conv_module (torch.nn.Module): Convolution module instance.
`ConvlutionModule` instance can be used as the argument.
dropout_rate (float): Dropout rate.
total_layer_num (int): Total number of layers
normalize_before (bool): Whether to use layer_norm before the first block.
concat_after (bool): Whether to concat attention layer's input and output.
if True, additional linear will be applied.
i.e. x -> x + linear(concat(x, att(x)))
if False, no additional linear will be applied. i.e. x -> x + att(x)
"""
def __init__(
self,
size,
self_attn,
feed_forward,
feed_forward_macaron,
conv_module,
dropout_rate,
total_layer_num,
normalize_before=True,
concat_after=False,
):
"""Construct an EncoderLayer object."""
super(ContextualBlockEncoderLayer, self).__init__()
self.self_attn = self_attn
self.feed_forward = feed_forward
self.feed_forward_macaron = feed_forward_macaron
self.conv_module = conv_module
self.norm1 = LayerNorm(size)
self.norm2 = LayerNorm(size)
if feed_forward_macaron is not None:
self.norm_ff_macaron = LayerNorm(size)
self.ff_scale = 0.5
else:
self.ff_scale = 1.0
if self.conv_module is not None:
self.norm_conv = LayerNorm(size) # for the CNN module
self.norm_final = LayerNorm(size) # for the final output of the block
self.dropout = nn.Dropout(dropout_rate)
self.size = size
self.normalize_before = normalize_before
self.concat_after = concat_after
self.total_layer_num = total_layer_num
if self.concat_after:
self.concat_linear = nn.Linear(size + size, size)
def forward(
self,
x,
mask,
infer_mode=False,
past_ctx=None,
next_ctx=None,
is_short_segment=False,
layer_idx=0,
cache=None,
):
"""Calculate forward propagation."""
if self.training or not infer_mode:
return self.forward_train(x, mask, past_ctx, next_ctx, layer_idx, cache)
else:
return self.forward_infer(
x, mask, past_ctx, next_ctx, is_short_segment, layer_idx, cache
)
def forward_train(
self, x, mask, past_ctx=None, next_ctx=None, layer_idx=0, cache=None
):
"""Compute encoded features.
Args:
x_input (torch.Tensor): Input tensor (#batch, time, size).
mask (torch.Tensor): Mask tensor for the input (#batch, time).
past_ctx (torch.Tensor): Previous contexutal vector
next_ctx (torch.Tensor): Next contexutal vector
cache (torch.Tensor): Cache tensor of the input (#batch, time - 1, size).
Returns:
torch.Tensor: Output tensor (#batch, time, size).
torch.Tensor: Mask tensor (#batch, time).
cur_ctx (torch.Tensor): Current contexutal vector
next_ctx (torch.Tensor): Next contexutal vector
layer_idx (int): layer index number
"""
nbatch = x.size(0)
nblock = x.size(1)
if past_ctx is not None:
if next_ctx is None:
# store all context vectors in one tensor
next_ctx = past_ctx.new_zeros(
nbatch, nblock, self.total_layer_num, x.size(-1)
)
else:
x[:, :, 0] = past_ctx[:, :, layer_idx]
# reshape ( nbatch, nblock, block_size + 2, dim )
# -> ( nbatch * nblock, block_size + 2, dim )
x = x.view(-1, x.size(-2), x.size(-1))
if mask is not None:
mask = mask.view(-1, mask.size(-2), mask.size(-1))
# whether to use macaron style
if self.feed_forward_macaron is not None:
residual = x
if self.normalize_before:
x = self.norm_ff_macaron(x)
x = residual + self.ff_scale * self.dropout(self.feed_forward_macaron(x))
if not self.normalize_before:
x = self.norm_ff_macaron(x)
residual = x
if self.normalize_before:
x = self.norm1(x)
if cache is None:
x_q = x
else:
assert cache.shape == (x.shape[0], x.shape[1] - 1, self.size)
x_q = x[:, -1:, :]
residual = residual[:, -1:, :]
mask = None if mask is None else mask[:, -1:, :]
if self.concat_after:
x_concat = torch.cat((x, self.self_attn(x_q, x, x, mask)), dim=-1)
x = residual + self.concat_linear(x_concat)
else:
x = residual + self.dropout(self.self_attn(x_q, x, x, mask))
if not self.normalize_before:
x = self.norm1(x)
# convolution module
if self.conv_module is not None:
residual = x
if self.normalize_before:
x = self.norm_conv(x)
x = residual + self.dropout(self.conv_module(x))
if not self.normalize_before:
x = self.norm_conv(x)
residual = x
if self.normalize_before:
x = self.norm2(x)
x = residual + self.ff_scale * self.dropout(self.feed_forward(x))
if not self.normalize_before:
x = self.norm2(x)
if self.conv_module is not None:
x = self.norm_final(x)
if cache is not None:
x = torch.cat([cache, x], dim=1)
layer_idx += 1
# reshape ( nbatch * nblock, block_size + 2, dim )
# -> ( nbatch, nblock, block_size + 2, dim )
x = x.view(nbatch, -1, x.size(-2), x.size(-1)).squeeze(1)
if mask is not None:
mask = mask.view(nbatch, -1, mask.size(-2), mask.size(-1)).squeeze(1)
if next_ctx is not None and layer_idx < self.total_layer_num:
next_ctx[:, 0, layer_idx, :] = x[:, 0, -1, :]
next_ctx[:, 1:, layer_idx, :] = x[:, 0:-1, -1, :]
return x, mask, False, next_ctx, next_ctx, layer_idx
def forward_infer(
self,
x,
mask,
past_ctx=None,
next_ctx=None,
is_short_segment=False,
layer_idx=0,
cache=None,
):
"""Compute encoded features.
Args:
x_input (torch.Tensor): Input tensor (#batch, time, size).
mask (torch.Tensor): Mask tensor for the input (#batch, time).
past_ctx (torch.Tensor): Previous contexutal vector
next_ctx (torch.Tensor): Next contexutal vector
cache (torch.Tensor): Cache tensor of the input (#batch, time - 1, size).
Returns:
torch.Tensor: Output tensor (#batch, time, size).
torch.Tensor: Mask tensor (#batch, time).
cur_ctx (torch.Tensor): Current contexutal vector
next_ctx (torch.Tensor): Next contexutal vector
layer_idx (int): layer index number
"""
nbatch = x.size(0)
nblock = x.size(1)
# if layer_idx == 0, next_ctx has to be None
if layer_idx == 0:
assert next_ctx is None
next_ctx = x.new_zeros(nbatch, self.total_layer_num, x.size(-1))
# reshape ( nbatch, nblock, block_size + 2, dim )
# -> ( nbatch * nblock, block_size + 2, dim )
x = x.view(-1, x.size(-2), x.size(-1))
if mask is not None:
mask = mask.view(-1, mask.size(-2), mask.size(-1))
# whether to use macaron style
if self.feed_forward_macaron is not None:
residual = x
if self.normalize_before:
x = self.norm_ff_macaron(x)
x = residual + self.ff_scale * self.dropout(self.feed_forward_macaron(x))
if not self.normalize_before:
x = self.norm_ff_macaron(x)
residual = x
if self.normalize_before:
x = self.norm1(x)
if cache is None:
x_q = x
else:
assert cache.shape == (x.shape[0], x.shape[1] - 1, self.size)
x_q = x[:, -1:, :]
residual = residual[:, -1:, :]
mask = None if mask is None else mask[:, -1:, :]
if self.concat_after:
x_concat = torch.cat((x, self.self_attn(x_q, x, x, mask)), dim=-1)
x = residual + self.concat_linear(x_concat)
else:
x = residual + self.dropout(self.self_attn(x_q, x, x, mask))
if not self.normalize_before:
x = self.norm1(x)
# convolution module
if self.conv_module is not None:
residual = x
if self.normalize_before:
x = self.norm_conv(x)
x = residual + self.dropout(self.conv_module(x))
if not self.normalize_before:
x = self.norm_conv(x)
residual = x
if self.normalize_before:
x = self.norm2(x)
x = residual + self.ff_scale * self.dropout(self.feed_forward(x))
if not self.normalize_before:
x = self.norm2(x)
if self.conv_module is not None:
x = self.norm_final(x)
if cache is not None:
x = torch.cat([cache, x], dim=1)
# reshape ( nbatch * nblock, block_size + 2, dim )
# -> ( nbatch, nblock, block_size + 2, dim )
x = x.view(nbatch, nblock, x.size(-2), x.size(-1))
if mask is not None:
mask = mask.view(nbatch, nblock, mask.size(-2), mask.size(-1))
# Propagete context information (the last frame of each block)
# to the first frame
# of the next block
if not is_short_segment:
if past_ctx is None:
# First block of an utterance
x[:, 0, 0, :] = x[:, 0, -1, :]
else:
x[:, 0, 0, :] = past_ctx[:, layer_idx, :]
if nblock > 1:
x[:, 1:, 0, :] = x[:, 0:-1, -1, :]
next_ctx[:, layer_idx, :] = x[:, -1, -1, :]
else:
next_ctx = None
return x, mask, True, past_ctx, next_ctx, is_short_segment, layer_idx + 1
|