File size: 8,358 Bytes
05005db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
#!/usr/bin/env python3
# -*- coding: utf-8 -*-

# Copyright 2019 Shigeki Karita
#  Apache 2.0  (http://www.apache.org/licenses/LICENSE-2.0)

"""Subsampling layer definition."""

import torch

from vec2wav2.models.conformer.embedding import PositionalEncoding


class TooShortUttError(Exception):
    """Raised when the utt is too short for subsampling.

    Args:
        message (str): Message for error catch
        actual_size (int): the short size that cannot pass the subsampling
        limit (int): the limit size for subsampling

    """

    def __init__(self, message, actual_size, limit):
        """Construct a TooShortUttError for error handler."""
        super().__init__(message)
        self.actual_size = actual_size
        self.limit = limit


def check_short_utt(ins, size):
    """Check if the utterance is too short for subsampling."""
    if isinstance(ins, Conv2dSubsampling2) and size < 3:
        return True, 3
    if isinstance(ins, Conv2dSubsampling) and size < 7:
        return True, 7
    if isinstance(ins, Conv2dSubsampling6) and size < 11:
        return True, 11
    if isinstance(ins, Conv2dSubsampling8) and size < 15:
        return True, 15
    return False, -1


class Conv2dSubsampling(torch.nn.Module):
    """Convolutional 2D subsampling (to 1/4 length).

    Args:
        idim (int): Input dimension.
        odim (int): Output dimension.
        dropout_rate (float): Dropout rate.
        pos_enc (torch.nn.Module): Custom position encoding layer.

    """

    def __init__(self, idim, odim, dropout_rate, pos_enc=None):
        """Construct an Conv2dSubsampling object."""
        super(Conv2dSubsampling, self).__init__()
        self.conv = torch.nn.Sequential(
            torch.nn.Conv2d(1, odim, 3, 2),
            torch.nn.ReLU(),
            torch.nn.Conv2d(odim, odim, 3, 2),
            torch.nn.ReLU(),
        )
        self.out = torch.nn.Sequential(
            torch.nn.Linear(odim * (((idim - 1) // 2 - 1) // 2), odim),
            pos_enc if pos_enc is not None else PositionalEncoding(odim, dropout_rate),
        )

    def forward(self, x, x_mask):
        """Subsample x.

        Args:
            x (torch.Tensor): Input tensor (#batch, time, idim).
            x_mask (torch.Tensor): Input mask (#batch, 1, time).

        Returns:
            torch.Tensor: Subsampled tensor (#batch, time', odim),
                where time' = time // 4.
            torch.Tensor: Subsampled mask (#batch, 1, time'),
                where time' = time // 4.

        """
        x = x.unsqueeze(1)  # (b, c, t, f)
        x = self.conv(x)
        b, c, t, f = x.size()
        x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f))
        if x_mask is None:
            return x, None
        return x, x_mask[:, :, :-2:2][:, :, :-2:2]

    def __getitem__(self, key):
        """Get item.

        When reset_parameters() is called, if use_scaled_pos_enc is used,
            return the positioning encoding.

        """
        if key != -1:
            raise NotImplementedError("Support only `-1` (for `reset_parameters`).")
        return self.out[key]


class Conv2dSubsampling2(torch.nn.Module):
    """Convolutional 2D subsampling (to 1/2 length).

    Args:
        idim (int): Input dimension.
        odim (int): Output dimension.
        dropout_rate (float): Dropout rate.
        pos_enc (torch.nn.Module): Custom position encoding layer.

    """

    def __init__(self, idim, odim, dropout_rate, pos_enc=None):
        """Construct an Conv2dSubsampling2 object."""
        super(Conv2dSubsampling2, self).__init__()
        self.conv = torch.nn.Sequential(
            torch.nn.Conv2d(1, odim, 3, 2),
            torch.nn.ReLU(),
            torch.nn.Conv2d(odim, odim, 3, 1),
            torch.nn.ReLU(),
        )
        self.out = torch.nn.Sequential(
            torch.nn.Linear(odim * (((idim - 1) // 2 - 2)), odim),
            pos_enc if pos_enc is not None else PositionalEncoding(odim, dropout_rate),
        )

    def forward(self, x, x_mask):
        """Subsample x.

        Args:
            x (torch.Tensor): Input tensor (#batch, time, idim).
            x_mask (torch.Tensor): Input mask (#batch, 1, time).

        Returns:
            torch.Tensor: Subsampled tensor (#batch, time', odim),
                where time' = time // 2.
            torch.Tensor: Subsampled mask (#batch, 1, time'),
                where time' = time // 2.

        """
        x = x.unsqueeze(1)  # (b, c, t, f)
        x = self.conv(x)
        b, c, t, f = x.size()
        x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f))
        if x_mask is None:
            return x, None
        return x, x_mask[:, :, :-2:2][:, :, :-2:1]

    def __getitem__(self, key):
        """Get item.

        When reset_parameters() is called, if use_scaled_pos_enc is used,
            return the positioning encoding.

        """
        if key != -1:
            raise NotImplementedError("Support only `-1` (for `reset_parameters`).")
        return self.out[key]


class Conv2dSubsampling6(torch.nn.Module):
    """Convolutional 2D subsampling (to 1/6 length).

    Args:
        idim (int): Input dimension.
        odim (int): Output dimension.
        dropout_rate (float): Dropout rate.
        pos_enc (torch.nn.Module): Custom position encoding layer.

    """

    def __init__(self, idim, odim, dropout_rate, pos_enc=None):
        """Construct an Conv2dSubsampling6 object."""
        super(Conv2dSubsampling6, self).__init__()
        self.conv = torch.nn.Sequential(
            torch.nn.Conv2d(1, odim, 3, 2),
            torch.nn.ReLU(),
            torch.nn.Conv2d(odim, odim, 5, 3),
            torch.nn.ReLU(),
        )
        self.out = torch.nn.Sequential(
            torch.nn.Linear(odim * (((idim - 1) // 2 - 2) // 3), odim),
            pos_enc if pos_enc is not None else PositionalEncoding(odim, dropout_rate),
        )

    def forward(self, x, x_mask):
        """Subsample x.

        Args:
            x (torch.Tensor): Input tensor (#batch, time, idim).
            x_mask (torch.Tensor): Input mask (#batch, 1, time).

        Returns:
            torch.Tensor: Subsampled tensor (#batch, time', odim),
                where time' = time // 6.
            torch.Tensor: Subsampled mask (#batch, 1, time'),
                where time' = time // 6.

        """
        x = x.unsqueeze(1)  # (b, c, t, f)
        x = self.conv(x)
        b, c, t, f = x.size()
        x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f))
        if x_mask is None:
            return x, None
        return x, x_mask[:, :, :-2:2][:, :, :-4:3]


class Conv2dSubsampling8(torch.nn.Module):
    """Convolutional 2D subsampling (to 1/8 length).

    Args:
        idim (int): Input dimension.
        odim (int): Output dimension.
        dropout_rate (float): Dropout rate.
        pos_enc (torch.nn.Module): Custom position encoding layer.

    """

    def __init__(self, idim, odim, dropout_rate, pos_enc=None):
        """Construct an Conv2dSubsampling8 object."""
        super(Conv2dSubsampling8, self).__init__()
        self.conv = torch.nn.Sequential(
            torch.nn.Conv2d(1, odim, 3, 2),
            torch.nn.ReLU(),
            torch.nn.Conv2d(odim, odim, 3, 2),
            torch.nn.ReLU(),
            torch.nn.Conv2d(odim, odim, 3, 2),
            torch.nn.ReLU(),
        )
        self.out = torch.nn.Sequential(
            torch.nn.Linear(odim * ((((idim - 1) // 2 - 1) // 2 - 1) // 2), odim),
            pos_enc if pos_enc is not None else PositionalEncoding(odim, dropout_rate),
        )

    def forward(self, x, x_mask):
        """Subsample x.

        Args:
            x (torch.Tensor): Input tensor (#batch, time, idim).
            x_mask (torch.Tensor): Input mask (#batch, 1, time).

        Returns:
            torch.Tensor: Subsampled tensor (#batch, time', odim),
                where time' = time // 8.
            torch.Tensor: Subsampled mask (#batch, 1, time'),
                where time' = time // 8.

        """
        x = x.unsqueeze(1)  # (b, c, t, f)
        x = self.conv(x)
        b, c, t, f = x.size()
        x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f))
        if x_mask is None:
            return x, None
        return x, x_mask[:, :, :-2:2][:, :, :-2:2][:, :, :-2:2]