Spaces:
Sleeping
Sleeping
File size: 7,250 Bytes
05005db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
import torch.nn as nn
from vec2wav2.models.fairseq_modules.fp32_group_norm import Fp32GroupNorm
class KmeansVectorQuantizer(nn.Module):
def __init__(
self, dim, num_vars, groups, combine_groups, vq_dim, time_first, gamma=0.25
):
"""Vector quantization using straight pass-through estimator (i.e. kmeans)
Args:
dim: input dimension (channels)
num_vars: number of quantized vectors per group
groups: number of groups for vector quantization
combine_groups: whether to use the vectors for all groups
vq_dim: dimensionality of the resulting quantized vector
time_first: if true, expect input in BxTxC format, otherwise in BxCxT
gamma: commitment loss coefficient
"""
super().__init__()
self.groups = groups
self.combine_groups = combine_groups
self.input_dim = dim
self.num_vars = num_vars
self.vq_dim = vq_dim
self.time_first = time_first
assert (
vq_dim % groups == 0
), f"dim {vq_dim} must be divisible by groups {groups} for concatenation"
self.var_dim = vq_dim // groups
num_groups = groups if not combine_groups else 1
self.embedding = nn.Parameter(
0.01 * torch.randn(num_vars, num_groups, self.var_dim)
)
self.projection = nn.Sequential(
nn.Conv1d(dim, dim, kernel_size=1, groups=groups, bias=False),
Fp32GroupNorm(groups, dim),
)
self.gamma = gamma
self.mse_mean = nn.MSELoss(reduction="mean")
def _pass_grad(self, x, y):
"""Manually set gradient for backward pass.
for y = f(x), ensure that during the backward pass,
dL/dy = dL/dx regardless of f(x).
Returns:
y, with the gradient forced to be dL/dy = dL/dx.
"""
return y.detach() + (x - x.detach())
@property
def expand_embedding(self):
if self.combine_groups:
return self.embedding.expand(self.num_vars, self.groups, self.var_dim)
return self.embedding
def forward_idx(self, x):
res = self.forward(x, produce_targets=True)
return res["x"], res["targets"]
def forward_idx_limited(self, x, valid_label2vqidx_mat):
# mask_mat = convert_valid_label2vqidx_to_mask_mat(valid_label2vqidx)
res = self.forward_group2(x, mask_mat=valid_label2vqidx_mat, produce_targets=True)
return res['x'], res['targets']
def forward(self, x, produce_targets=False):
result = {"num_vars": self.num_vars}
if self.time_first:
x = x.transpose(1, 2)
bsz, fsz, tsz = x.shape
ze = self.projection(x)
ze_ = ze.view(bsz, self.groups, self.var_dim, tsz).permute(0, 3, 1, 2)
d = (
(ze_.unsqueeze(0) - self.expand_embedding.unsqueeze(1).unsqueeze(1))
.view(self.num_vars, bsz, tsz, self.groups, -1)
.norm(dim=-1, p=2)
)
idx = d.argmin(dim=0)
zq = (
torch.stack(
[
self.expand_embedding[idx[..., group], group]
for group in range(self.groups)
],
dim=-2,
)
.view(bsz, tsz, self.groups * self.var_dim)
.permute(0, 2, 1)
)
assert ze.shape == zq.shape, (ze.shape, zq.shape)
x = self._pass_grad(ze, zq)
with torch.no_grad():
hard_x = (
idx.new_zeros(bsz * tsz * self.groups, self.num_vars)
.scatter_(-1, idx.view(-1, 1), 1.0)
.view(bsz * tsz, self.groups, -1)
)
hard_probs = torch.mean(hard_x.float(), dim=0)
result["code_perplexity"] = torch.exp(
-torch.sum(hard_probs * torch.log(hard_probs + 1e-7), dim=-1)
).sum()
if produce_targets:
result["targets"] = idx
if self.time_first:
x = x.transpose(1, 2) # BCT -> BTC
result["x"] = x
ze = ze.float()
zq = zq.float()
latent_loss = self.mse_mean(zq, ze.detach())
commitment_loss = self.mse_mean(ze, zq.detach())
result["kmeans_loss"] = latent_loss + self.gamma * commitment_loss
return result
def forward_group2(self, x, mask_mat=None, produce_targets=False, inf=999999):
assert mask_mat is not None
result = {"num_vars": self.num_vars}
if self.time_first:
x = x.transpose(1, 2)
bsz, fsz, tsz = x.shape
ze = self.projection(x)
ze_ = ze.view(bsz, self.groups, self.var_dim, tsz).permute(0, 3, 1, 2)
ze_0 = ze_[:, :, 0, None, :]
ze_1 = ze_[:, :, 1, None, :] # 4 * 100 * 320 * 128
cb0_expand = self.expand_embedding[:, 0, :]
cb1_expand = self.expand_embedding[:, 1, :] # 320 * 128
dist_0 = ((ze_0 - cb0_expand) ** 2).sum(dim=-1)[:, :, :, None]
dist_1 = ((ze_1 - cb1_expand) ** 2).sum(dim=-1)[:, :, None, :]
res_0, res_1 = torch.broadcast_tensors(dist_0, dist_1)
mask_mat = (1 - mask_mat[None, None, :, :].to(res_0.device) * torch.ones_like(res_0)) * inf
# mask_mat = mask_mat.to(x.device)
d_flt = (res_0 + res_1 + mask_mat).view(bsz, tsz, -1)
idx_flt = torch.argmin(d_flt, dim=-1)
idx = torch.stack((idx_flt // self.num_vars, idx_flt % self.num_vars), dim=-1)
zq = (
torch.stack(
[
self.expand_embedding[idx[..., group], group]
for group in range(self.groups)
],
dim=-2,
)
.view(bsz, tsz, self.groups * self.var_dim)
.permute(0, 2, 1)
)
assert ze.shape == zq.shape, (ze.shape, zq.shape)
x = self._pass_grad(ze, zq)
with torch.no_grad():
hard_x = (
idx.new_zeros(bsz * tsz * self.groups, self.num_vars)
.scatter_(-1, idx.view(-1, 1), 1.0)
.view(bsz * tsz, self.groups, -1)
)
hard_probs = torch.mean(hard_x.float(), dim=0)
result["code_perplexity"] = torch.exp(
-torch.sum(hard_probs * torch.log(hard_probs + 1e-7), dim=-1)
).sum()
if produce_targets:
result["targets"] = idx
if self.time_first:
x = x.transpose(1, 2) # BCT -> BTC
result["x"] = x
ze = ze.float()
zq = zq.float()
latent_loss = self.mse_mean(zq, ze.detach())
commitment_loss = self.mse_mean(ze, zq.detach())
result["kmeans_loss"] = latent_loss + self.gamma * commitment_loss
return result
if __name__ == "__main__":
quantizer = KmeansVectorQuantizer(dim=256, num_vars=320, groups=2, combine_groups=False, vq_dim=256, time_first=True)
x = torch.ones(4, 100, 256)
result = quantizer.forward_group2(x, mask_mat=torch.randint(0, 2, (320, 320)))
print(result)
|