Spaces:
Sleeping
Sleeping
File size: 10,230 Bytes
05005db eda4a4a 05005db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 |
# -*- coding: utf-8 -*-
# Copyright 2019 Tomoki Hayashi
# MIT License (https://opensource.org/licenses/MIT)
"""Utility functions."""
import fnmatch
import logging
import os
import sys
import tarfile
from distutils.version import LooseVersion
from filelock import FileLock
import h5py
import numpy as np
import torch
import yaml
import soundfile as sf
import torchaudio.transforms as transforms
def read_wav_16k(audio_path):
"""Process audio file to 16kHz sample rate"""
if isinstance(audio_path, tuple): # Gradio audio input returns (sample_rate, audio_data)
wav = audio_path[1]
sr = audio_path[0]
else: # Regular file path
assert os.path.exists(audio_path), f"File not found: {audio_path}"
if audio_path.endswith(".wav"):
wav, sr = sf.read(audio_path)
if wav.ndim > 1:
wav = wav.mean(axis=-1) # Convert to mono
if sr != 16000:
audio_tensor = torch.tensor(wav, dtype=torch.float32)
resampler = transforms.Resample(orig_freq=sr, new_freq=16000)
wav = resampler(audio_tensor)
wav = wav.numpy()
else:
import librosa
wav, sr = librosa.load(audio_path, sr=16000, mono=True)
return wav
def find_files(root_dir, query="*.wav", include_root_dir=True):
"""Find files recursively.
Args:
root_dir (str): Root root_dir to find.
query (str): Query to find.
include_root_dir (bool): If False, root_dir name is not included.
Returns:
list: List of found filenames.
"""
files = []
for root, dirnames, filenames in os.walk(root_dir, followlinks=True):
for filename in fnmatch.filter(filenames, query):
files.append(os.path.join(root, filename))
if not include_root_dir:
files = [file_.replace(root_dir + "/", "") for file_ in files]
return files
def read_hdf5(hdf5_name, hdf5_path):
"""Read hdf5 dataset.
Args:
hdf5_name (str): Filename of hdf5 file.
hdf5_path (str): Dataset name in hdf5 file.
Return:
any: Dataset values.
"""
if not os.path.exists(hdf5_name):
logging.error(f"There is no such a hdf5 file ({hdf5_name}).")
sys.exit(1)
hdf5_file = h5py.File(hdf5_name, "r")
if hdf5_path not in hdf5_file:
logging.error(f"There is no such a data in hdf5 file. ({hdf5_path})")
sys.exit(1)
hdf5_data = hdf5_file[hdf5_path][()]
hdf5_file.close()
return hdf5_data
def write_hdf5(hdf5_name, hdf5_path, write_data, is_overwrite=True):
"""Write dataset to hdf5.
Args:
hdf5_name (str): Hdf5 dataset filename.
hdf5_path (str): Dataset path in hdf5.
write_data (ndarray): Data to write.
is_overwrite (bool): Whether to overwrite dataset.
"""
# convert to numpy array
write_data = np.array(write_data)
# check folder existence
folder_name, _ = os.path.split(hdf5_name)
if not os.path.exists(folder_name) and len(folder_name) != 0:
os.makedirs(folder_name)
# check hdf5 existence
if os.path.exists(hdf5_name):
# if already exists, open with r+ mode
hdf5_file = h5py.File(hdf5_name, "r+")
# check dataset existence
if hdf5_path in hdf5_file:
if is_overwrite:
logging.warning(
"Dataset in hdf5 file already exists. " "recreate dataset in hdf5."
)
hdf5_file.__delitem__(hdf5_path)
else:
logging.error(
"Dataset in hdf5 file already exists. "
"if you want to overwrite, please set is_overwrite = True."
)
hdf5_file.close()
sys.exit(1)
else:
# if not exists, open with w mode
hdf5_file = h5py.File(hdf5_name, "w")
# write data to hdf5
hdf5_file.create_dataset(hdf5_path, data=write_data)
hdf5_file.flush()
hdf5_file.close()
class HDF5ScpLoader(object):
"""Loader class for a fests.scp file of hdf5 file.
Examples:
key1 /some/path/a.h5:feats
key2 /some/path/b.h5:feats
key3 /some/path/c.h5:feats
key4 /some/path/d.h5:feats
...
>>> loader = HDF5ScpLoader("hdf5.scp")
>>> array = loader["key1"]
key1 /some/path/a.h5
key2 /some/path/b.h5
key3 /some/path/c.h5
key4 /some/path/d.h5
...
>>> loader = HDF5ScpLoader("hdf5.scp", "feats")
>>> array = loader["key1"]
key1 /some/path/a.h5:feats_1,feats_2
key2 /some/path/b.h5:feats_1,feats_2
key3 /some/path/c.h5:feats_1,feats_2
key4 /some/path/d.h5:feats_1,feats_2
...
>>> loader = HDF5ScpLoader("hdf5.scp")
# feats_1 and feats_2 will be concatenated
>>> array = loader["key1"]
"""
def __init__(self, feats_scp, default_hdf5_path="feats"):
"""Initialize HDF5 scp loader.
Args:
feats_scp (str): Kaldi-style feats.scp file with hdf5 format.
default_hdf5_path (str): Path in hdf5 file. If the scp contain the info, not used.
"""
self.default_hdf5_path = default_hdf5_path
with open(feats_scp) as f:
lines = [line.replace("\n", "") for line in f.readlines()]
self.data = {}
for line in lines:
key, value = line.split()
self.data[key] = value
def get_path(self, key):
"""Get hdf5 file path for a given key."""
return self.data[key]
def __getitem__(self, key):
"""Get ndarray for a given key."""
p = self.data[key]
if ":" in p:
if len(p.split(",")) == 1:
return read_hdf5(*p.split(":"))
else:
p1, p2 = p.split(":")
feats = [read_hdf5(p1, p) for p in p2.split(",")]
return np.concatenate(
[f if len(f.shape) != 1 else f.reshape(-1, 1) for f in feats], 1
)
else:
return read_hdf5(p, self.default_hdf5_path)
def __len__(self):
"""Return the length of the scp file."""
return len(self.data)
def __iter__(self):
"""Return the iterator of the scp file."""
return iter(self.data)
def keys(self):
"""Return the keys of the scp file."""
return self.data.keys()
def values(self):
"""Return the values of the scp file."""
for key in self.keys():
yield self[key]
class NpyScpLoader(object):
"""Loader class for a fests.scp file of npy file.
Examples:
key1 /some/path/a.npy
key2 /some/path/b.npy
key3 /some/path/c.npy
key4 /some/path/d.npy
...
>>> loader = NpyScpLoader("feats.scp")
>>> array = loader["key1"]
"""
def __init__(self, feats_scp):
"""Initialize npy scp loader.
Args:
feats_scp (str): Kaldi-style feats.scp file with npy format.
"""
with open(feats_scp) as f:
lines = [line.replace("\n", "") for line in f.readlines()]
self.data = {}
for line in lines:
key, value = line.split()
self.data[key] = value
def get_path(self, key):
"""Get npy file path for a given key."""
return self.data[key]
def __getitem__(self, key):
"""Get ndarray for a given key."""
return np.load(self.data[key])
def __len__(self):
"""Return the length of the scp file."""
return len(self.data)
def __iter__(self):
"""Return the iterator of the scp file."""
return iter(self.data)
def keys(self):
"""Return the keys of the scp file."""
return self.data.keys()
def values(self):
"""Return the values of the scp file."""
for key in self.keys():
yield self[key]
def load_model(checkpoint, config=None):
"""Load trained model.
Args:
checkpoint (str): Checkpoint path.
config (dict): Configuration dict.
Return:
torch.nn.Module: Model instance.
"""
# load config if not provided
if config is None:
dirname = os.path.dirname(checkpoint)
config = os.path.join(dirname, "config.yml")
with open(config) as f:
config = yaml.load(f, Loader=yaml.Loader)
# lazy load for circular error
import vec2wav2.models
# get model and load parameters
model_class = getattr(
vec2wav2.models,
config.get("generator_type", "BigVGAN"),
)
model = vec2wav2.models.VEC2WAV2Generator(
vec2wav2.models.CTXVEC2WAVFrontend(config["prompt_net_type"], config["num_mels"], **config["frontend_params"]),
model_class(**config["generator_params"])
)
model.load_state_dict(
torch.load(checkpoint, map_location="cpu")["model"]["generator"]
)
return model
def load_feat_codebook(codebook: np.ndarray, device: str="cuda"):
"""Given a codebook of shape [G, V, D], convert into a torch Module that can be called.
"""
feat_codebook = torch.tensor(codebook).to(device) # (2, 320, 384)
feat_codebook_numgroups = feat_codebook.shape[0]
feat_codebook = torch.nn.ModuleList([torch.nn.Embedding.from_pretrained(feat_codebook[i], freeze=True) for i in range(feat_codebook_numgroups)]).to(device)
return feat_codebook, feat_codebook_numgroups
def idx2vec(codebook: torch.nn.Module, idx: torch.Tensor, num_groups: int):
"""Given a codebook (converted, so can be called), and a idx tensor with shape [L, groups] or [B, L, groups]
Return the corresponding vectors
"""
return torch.cat([codebook[i](idx[..., i]) for i in range(num_groups)], dim=-1) # (L, D)
def crop_seq(x, offsets, length):
"""Crop padded tensor with specified length.
:param x: (torch.Tensor) The shape is (B, C, D)
:param offsets: (list)
:param min_len: (int)
:return:
"""
B, C, T = x.shape
x_ = x.new_zeros(B, C, length)
for i in range(B):
x_[i, :] = x[i, :, offsets[i]: offsets[i] + length]
return x_
|