Spaces:
Sleeping
Sleeping
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
try: | |
from apex.normalization import FusedLayerNorm as _FusedLayerNorm | |
has_fused_layernorm = True | |
class FusedLayerNorm(_FusedLayerNorm): | |
def forward(self, x): | |
if not x.is_cuda: | |
return super().forward(x) | |
else: | |
with torch.cuda.device(x.device): | |
return super().forward(x) | |
except ImportError: | |
has_fused_layernorm = False | |
def LayerNorm(normalized_shape, eps=1e-5, elementwise_affine=True, export=False): | |
if torch.jit.is_scripting() or torch.jit.is_tracing(): | |
export = True | |
if not export and torch.cuda.is_available() and has_fused_layernorm: | |
return FusedLayerNorm(normalized_shape, eps, elementwise_affine) | |
return torch.nn.LayerNorm(normalized_shape, eps, elementwise_affine) | |
class Fp32LayerNorm(nn.LayerNorm): | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
def forward(self, input): | |
output = F.layer_norm( | |
input.float(), | |
self.normalized_shape, | |
self.weight.float() if self.weight is not None else None, | |
self.bias.float() if self.bias is not None else None, | |
self.eps, | |
) | |
return output.type_as(input) | |