answers_all / model.py
capNimo's picture
Upload 8 files
2f97760 verified
raw
history blame contribute delete
538 Bytes
from transformers import ViltProcessor, ViltForQuestionAnswering
from PIL import Image
# 470MB
processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
def model_pipeline(text: str, image: Image):
# prepare inputs
encoding = processor(image, text, return_tensors="pt")
# forward pass
outputs = model(**encoding)
logits = outputs.logits
idx = logits.argmax(-1).item()
return model.config.id2label[idx]