File size: 6,630 Bytes
bed9a40
f687747
bed9a40
 
 
 
 
 
 
 
 
 
5170767
bed9a40
 
 
47bd768
91bafa0
 
 
 
 
 
9abe70d
ce33260
bed9a40
 
 
 
 
 
 
 
ce33260
 
 
a15a7f2
ddf8ebd
bed9a40
 
 
 
 
 
 
 
 
 
 
ce33260
bed9a40
 
 
 
 
 
 
 
 
 
5170767
 
 
bed9a40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9c985d
 
bed9a40
 
 
 
 
 
 
 
 
 
e0e48b5
bed9a40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9abe70d
bed9a40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9abe70d
bed9a40
5170767
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bed9a40
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import os
import io

#  external libraries
import torch
import torch.utils.checkpoint
import torch.utils.checkpoint
from accelerate import Accelerator
from accelerate.logging import get_logger
from diffusers import AutoencoderKL, DDIMScheduler
from diffusers.utils import check_min_version
from diffusers.utils.import_utils import is_xformers_available
from diffusers import UNet2DConditionModel
from transformers import CLIPTextModel, CLIPTokenizer

# custom imports
from model.src.datasets.dresscode import DressCodeDataset
from model.src.datasets.vitonhd import VitonHDDataset
from model.src.mgd_pipelines.mgd_pipe import MGDPipe
from model.src.mgd_pipelines.mgd_pipe_disentangled import MGDPipeDisentangled
from model.src.utils.arg_parser import eval_parse_args
from model.src.utils.image_from_pipe import generate_images_from_mgd_pipe
from model.src.utils.set_seeds import set_seed
from PIL import Image
from huggingface_hub import HfApi, HfFolder

# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.10.0.dev0")

logger = get_logger(__name__, log_level="INFO")
os.environ["TOKENIZERS_PARALLELISM"] = "true"
os.environ["WANDB_START_METHOD"] = "thread"

hf_token = os.getenv("HF_TOKEN")
api = HfApi()
HfFolder.save_token(hf_token)

def main(json_from_req: dict) -> None:
    args = eval_parse_args()
    accelerator = Accelerator(
        mixed_precision=args.mixed_precision,
    )
    device = accelerator.device

    # If passed along, set the training seed now.
    if args.seed is not None:
        set_seed(args.seed)

    # Load scheduler, tokenizer and models.
    val_scheduler = DDIMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
    val_scheduler.set_timesteps(50, device=device)

    tokenizer = CLIPTokenizer.from_pretrained(
        args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision
    )
    text_encoder = CLIPTextModel.from_pretrained(
        args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision
    )
    vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision)

    unet = load_mgd_model(dataset=args.dataset, pretrained=True)
    #unet = torch.hub.load(dataset=args.dataset, repo_or_dir='aimagelab/multimodal-garment-designer', source='github',
                          #model='mgd', pretrained=True)

    # Freeze vae and text_encoder
    vae.requires_grad_(False)
    text_encoder.requires_grad_(False)

    # Enable memory efficient attention if requested
    if args.enable_xformers_memory_efficient_attention:
        if is_xformers_available():
            unet.enable_xformers_memory_efficient_attention()
        else:
            raise ValueError("xformers is not available. Make sure it is installed correctly")

    if args.category:
        category = [args.category]
    else:
        category = ['dresses', 'upper_body', 'lower_body']

    if args.dataset == "dresscode":
        test_dataset = DressCodeDataset(
            dataroot_path=args.dataset_path,
            phase='test',
            order=args.test_order,
            radius=5,
            sketch_threshold_range=(20, 20),
            tokenizer=tokenizer,
            category=category,
            size=(512, 384),
            json_from_req=json_from_req
        )
    elif args.dataset == "vitonhd":
        test_dataset = VitonHDDataset(
            dataroot_path=args.dataset_path,
            phase='test',
            order=args.test_order,
            sketch_threshold_range=(20, 20),
            radius=5,
            tokenizer=tokenizer,
            size=(512, 384),
            json_from_req=json_from_req
        )
    else:
        raise NotImplementedError

    test_dataloader = torch.utils.data.DataLoader(
        test_dataset,
        shuffle=False,
        batch_size=args.batch_size,
        num_workers=args.num_workers_test,
    )

    # For mixed precision training we cast the text_encoder and vae weights to half-precision
    # as these models are only used for inference, keeping weights in full precision is not required.
    weight_dtype = torch.float32
    if args.mixed_precision == 'fp16':
        weight_dtype = torch.float16

    # Move text_encode and vae to gpu and cast to weight_dtype
    text_encoder.to(device, dtype=weight_dtype)
    vae.to(device, dtype=weight_dtype)

    unet.eval()
    # Select fast classifier free guidance or disentagle classifier free guidance according to the disentagle parameter in args
    with torch.inference_mode():
        if args.disentagle:
            val_pipe = MGDPipeDisentangled(
                text_encoder=text_encoder,
                vae=vae,
                unet=unet.to(vae.dtype),
                tokenizer=tokenizer,
                scheduler=val_scheduler,
            ).to(device)
        else:
            val_pipe = MGDPipe(
                text_encoder=text_encoder,
                vae=vae,
                unet=unet.to(vae.dtype),
                tokenizer=tokenizer,
                scheduler=val_scheduler,
            ).to(device)

        val_pipe.enable_attention_slicing()
        test_dataloader = accelerator.prepare(test_dataloader)
        final_image = generate_images_from_mgd_pipe(
            test_order=args.test_order,
            pipe=val_pipe,
            test_dataloader=test_dataloader,
            save_name=args.save_name,
            dataset=args.dataset,
            output_dir=args.output_dir,
            guidance_scale=args.guidance_scale,
            guidance_scale_pose=args.guidance_scale_pose,
            guidance_scale_sketch=args.guidance_scale_sketch,
            sketch_cond_rate=args.sketch_cond_rate,
            start_cond_rate=args.start_cond_rate,
            no_pose=False,
            disentagle=False,
            seed=args.seed,
        )
        return final_image  # Now returning the generated image

def load_mgd_model(dataset: str, pretrained: bool = True) -> UNet2DConditionModel:
    """ 
    MGD model
    pretrained (bool): load pretrained weights into the model
    """
    config = UNet2DConditionModel.load_config("benjamin-paine/stable-diffusion-v1-5-inpainting", subfolder="unet")
    config['in_channels'] = 28
    unet = UNet2DConditionModel.from_config(config)

    if pretrained:
        checkpoint = f"https://github.com/aimagelab/multimodal-garment-designer/releases/download/weights/{dataset}.pth"
        unet.load_state_dict(torch.hub.load_state_dict_from_url(checkpoint, progress=True))

    return unet

if __name__ == "__main__":
    main()