File size: 4,940 Bytes
bed9a40
 
 
 
 
 
 
 
9abe70d
bed9a40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9abe70d
 
bed9a40
9abe70d
bed9a40
9abe70d
bed9a40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9abe70d
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import os
from tqdm import tqdm
import torch

import torchvision.transforms as T
from diffusers.pipeline_utils import DiffusionPipeline
from torch.utils.data import DataLoader
from src.utils.image_composition import compose_img, compose_img_dresscode
from PIL import Image


@torch.inference_mode()
def generate_images_from_mgd_pipe(
    test_order: bool,
    pipe: DiffusionPipeline,
    test_dataloader: DataLoader,
    save_name: str,
    dataset: str,
    output_dir: str,
    guidance_scale: float = 7.5,
    guidance_scale_pose: float = 7.5,
    guidance_scale_sketch: float = 7.5,
    sketch_cond_rate: float = 1.0,
    start_cond_rate: float = 0.0,
    no_pose: bool = False,
    disentagle: bool = False,
    seed: int = 1234,
    ) -> None:
    #This function generates images from the given test dataloader and saves them to the output directory.
    """
    Args:
        test_order: The order of the test dataset.
        pipe: The diffusion pipeline.
        test_dataloader: The test dataloader.
        save_name: The name of the saved images.
        dataset: The name of the dataset.
        output_dir: The output directory.
        guidance_scale: The guidance scale.
        guidance_scale_pose: The guidance scale for the pose.
        guidance_scale_sketch: The guidance scale for the sketch.
        sketch_cond_rate: The sketch condition rate.
        start_cond_rate: The start condition rate.
        no_pose: Whether to use the pose.
        disentagle: Whether to use disentagle.
        seed: The seed.
        
        Returns:
        None
    """ 
    #assert(save_name != ""), "save_name must be specified"
    #assert(output_dir != ""), "output_dir must be specified"

    #path = os.path.join(output_dir, f"{save_name}_{test_order}", "images")

    #os.makedirs(path, exist_ok=True)
    generator = torch.Generator("cuda").manual_seed(seed)

    for batch in tqdm(test_dataloader):
        model_img = batch["image"]
        mask_img = batch["inpaint_mask"]
        mask_img = mask_img.type(torch.float32)
        prompts = batch["original_captions"]  # prompts is a list of length N, where N=batch size.
        pose_map = batch["pose_map"]
        sketch = batch["im_sketch"]
        ext = ".jpg"

        if disentagle:
            guidance_scale = guidance_scale
            num_samples = 1
            guidance_scale_pose = guidance_scale_pose
            guidance_scale_sketch = guidance_scale_sketch
            generated_images = pipe(
                prompt=prompts,
                image=model_img,
                mask_image=mask_img,
                pose_map=pose_map,
                sketch=sketch,
                height=512,
                width=384,
                guidance_scale=guidance_scale,
                num_images_per_prompt=num_samples,
                generator=generator,
                sketch_cond_rate=sketch_cond_rate,
                guidance_scale_pose=guidance_scale_pose,
                guidance_scale_sketch=guidance_scale_sketch,
                start_cond_rate=start_cond_rate,
                no_pose=no_pose,
            ).images
        else:
            guidance_scale = 7.5
            num_samples = 1
            generated_images = pipe(
                prompt=prompts,
                image=model_img,
                mask_image=mask_img,
                pose_map=pose_map,
                sketch=sketch,
                height=512,
                width=384,
                guidance_scale=guidance_scale,
                num_images_per_prompt=num_samples,
                generator=generator,
                sketch_cond_rate=sketch_cond_rate,
                start_cond_rate=start_cond_rate,
                no_pose=no_pose,
            ).images

            for i in range(len(generated_images)):
                model_i = model_img[i] * 0.5 + 0.5
                if dataset == "vitonhd":
                    final_img = compose_img(model_i, generated_images[i], batch['im_parse'][i])
                else: # dataset == Dresscode
                    face = batch["stitch_label"][i].to(model_img.device)
                    face = T.functional.resize(face, 
                                               size=(512,384), 
                                               interpolation=T.InterpolationMode.BILINEAR, 
                                               antialias = True
                                               )

                    final_img = compose_img_dresscode(
                        gt_img = model_i, 
                        fake_img = T.functional.to_tensor(generated_images[i]).to(model_img.device), 
                        im_head = face
                        )
                
                return T.functional.to_pil_image(final_img)
                #final_img = T.functional.to_pil_image(final_img)
                #final_img.save(
                #    os.path.join(path, batch["im_name"][i].replace(".jpg", ext)))