lamiaaEl commited on
Commit
687b539
·
verified ·
1 Parent(s): 99fe2a6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -9
app.py CHANGED
@@ -6,10 +6,9 @@ from PIL import Image, ImageDraw, ImageFont
6
 
7
  import pytesseract
8
 
9
- # If the executable is not found, set the path explicitly
10
- pytesseract.pytesseract.tesseract_cmd = '/usr/bin/tesseract' # Adjust if necessary
11
 
12
- # Load the LayoutLMv3 model and processor
13
  processor = AutoProcessor.from_pretrained("microsoft/layoutlmv3-base", apply_ocr=True)
14
  model = AutoModelForTokenClassification.from_pretrained("capitaletech/language-levels-LayoutLMv3-v4")
15
 
@@ -37,23 +36,18 @@ def iob_to_label(label):
37
  def process_image(image):
38
  width, height = image.size
39
 
40
- # Encode
41
  encoding = processor(image, truncation=True, return_offsets_mapping=True, return_tensors="pt")
42
  offset_mapping = encoding.pop('offset_mapping')
43
 
44
- # Forward pass
45
  outputs = model(**encoding)
46
 
47
- # Get predictions
48
  predictions = outputs.logits.argmax(-1).squeeze().tolist()
49
  token_boxes = encoding.bbox.squeeze().tolist()
50
 
51
- # Only keep non-subword predictions
52
  is_subword = np.array(offset_mapping.squeeze().tolist())[:, 0] != 0
53
  true_predictions = [id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx]]
54
  true_boxes = [unnormalize_box(box, width, height) for idx, box in enumerate(token_boxes) if not is_subword[idx]]
55
 
56
- # Draw predictions over the image
57
  draw = ImageDraw.Draw(image)
58
  font = ImageFont.load_default()
59
  for prediction, box in zip(true_predictions, true_boxes):
@@ -63,7 +57,6 @@ def process_image(image):
63
 
64
  return image
65
 
66
- # Streamlit UI
67
  st.title("Language Levels Extraction using LayoutLMv3 Model")
68
  st.write("Use this application to predict language levels in CVs.")
69
 
 
6
 
7
  import pytesseract
8
 
9
+ pytesseract.pytesseract.tesseract_cmd = '/usr/bin/tesseract'
10
+
11
 
 
12
  processor = AutoProcessor.from_pretrained("microsoft/layoutlmv3-base", apply_ocr=True)
13
  model = AutoModelForTokenClassification.from_pretrained("capitaletech/language-levels-LayoutLMv3-v4")
14
 
 
36
  def process_image(image):
37
  width, height = image.size
38
 
 
39
  encoding = processor(image, truncation=True, return_offsets_mapping=True, return_tensors="pt")
40
  offset_mapping = encoding.pop('offset_mapping')
41
 
 
42
  outputs = model(**encoding)
43
 
 
44
  predictions = outputs.logits.argmax(-1).squeeze().tolist()
45
  token_boxes = encoding.bbox.squeeze().tolist()
46
 
 
47
  is_subword = np.array(offset_mapping.squeeze().tolist())[:, 0] != 0
48
  true_predictions = [id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx]]
49
  true_boxes = [unnormalize_box(box, width, height) for idx, box in enumerate(token_boxes) if not is_subword[idx]]
50
 
 
51
  draw = ImageDraw.Draw(image)
52
  font = ImageFont.load_default()
53
  for prediction, box in zip(true_predictions, true_boxes):
 
57
 
58
  return image
59
 
 
60
  st.title("Language Levels Extraction using LayoutLMv3 Model")
61
  st.write("Use this application to predict language levels in CVs.")
62