Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -6,10 +6,9 @@ from PIL import Image, ImageDraw, ImageFont
|
|
6 |
|
7 |
import pytesseract
|
8 |
|
9 |
-
|
10 |
-
|
11 |
|
12 |
-
# Load the LayoutLMv3 model and processor
|
13 |
processor = AutoProcessor.from_pretrained("microsoft/layoutlmv3-base", apply_ocr=True)
|
14 |
model = AutoModelForTokenClassification.from_pretrained("capitaletech/language-levels-LayoutLMv3-v4")
|
15 |
|
@@ -37,23 +36,18 @@ def iob_to_label(label):
|
|
37 |
def process_image(image):
|
38 |
width, height = image.size
|
39 |
|
40 |
-
# Encode
|
41 |
encoding = processor(image, truncation=True, return_offsets_mapping=True, return_tensors="pt")
|
42 |
offset_mapping = encoding.pop('offset_mapping')
|
43 |
|
44 |
-
# Forward pass
|
45 |
outputs = model(**encoding)
|
46 |
|
47 |
-
# Get predictions
|
48 |
predictions = outputs.logits.argmax(-1).squeeze().tolist()
|
49 |
token_boxes = encoding.bbox.squeeze().tolist()
|
50 |
|
51 |
-
# Only keep non-subword predictions
|
52 |
is_subword = np.array(offset_mapping.squeeze().tolist())[:, 0] != 0
|
53 |
true_predictions = [id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx]]
|
54 |
true_boxes = [unnormalize_box(box, width, height) for idx, box in enumerate(token_boxes) if not is_subword[idx]]
|
55 |
|
56 |
-
# Draw predictions over the image
|
57 |
draw = ImageDraw.Draw(image)
|
58 |
font = ImageFont.load_default()
|
59 |
for prediction, box in zip(true_predictions, true_boxes):
|
@@ -63,7 +57,6 @@ def process_image(image):
|
|
63 |
|
64 |
return image
|
65 |
|
66 |
-
# Streamlit UI
|
67 |
st.title("Language Levels Extraction using LayoutLMv3 Model")
|
68 |
st.write("Use this application to predict language levels in CVs.")
|
69 |
|
|
|
6 |
|
7 |
import pytesseract
|
8 |
|
9 |
+
pytesseract.pytesseract.tesseract_cmd = '/usr/bin/tesseract'
|
10 |
+
|
11 |
|
|
|
12 |
processor = AutoProcessor.from_pretrained("microsoft/layoutlmv3-base", apply_ocr=True)
|
13 |
model = AutoModelForTokenClassification.from_pretrained("capitaletech/language-levels-LayoutLMv3-v4")
|
14 |
|
|
|
36 |
def process_image(image):
|
37 |
width, height = image.size
|
38 |
|
|
|
39 |
encoding = processor(image, truncation=True, return_offsets_mapping=True, return_tensors="pt")
|
40 |
offset_mapping = encoding.pop('offset_mapping')
|
41 |
|
|
|
42 |
outputs = model(**encoding)
|
43 |
|
|
|
44 |
predictions = outputs.logits.argmax(-1).squeeze().tolist()
|
45 |
token_boxes = encoding.bbox.squeeze().tolist()
|
46 |
|
|
|
47 |
is_subword = np.array(offset_mapping.squeeze().tolist())[:, 0] != 0
|
48 |
true_predictions = [id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx]]
|
49 |
true_boxes = [unnormalize_box(box, width, height) for idx, box in enumerate(token_boxes) if not is_subword[idx]]
|
50 |
|
|
|
51 |
draw = ImageDraw.Draw(image)
|
52 |
font = ImageFont.load_default()
|
53 |
for prediction, box in zip(true_predictions, true_boxes):
|
|
|
57 |
|
58 |
return image
|
59 |
|
|
|
60 |
st.title("Language Levels Extraction using LayoutLMv3 Model")
|
61 |
st.write("Use this application to predict language levels in CVs.")
|
62 |
|