import os import numpy as np import streamlit as st from transformers import AutoModelForTokenClassification, AutoProcessor from PIL import Image, ImageDraw, ImageFont import pytesseract pytesseract.pytesseract.tesseract_cmd = '/usr/bin/tesseract' processor = AutoProcessor.from_pretrained("microsoft/layoutlmv3-base", apply_ocr=True) model = AutoModelForTokenClassification.from_pretrained("capitaletech/language-levels-LayoutLMv3-v4") labels = ["language", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10"] label2id = {label: idx for idx, label in enumerate(labels)} id2label = {v: k for k, v in label2id.items()} label2color = { 'language': 'blue', '1': 'red', '2': 'red', '3': 'red', '4': 'orange', '5': 'orange', '6': 'orange', '7': 'green', '8': 'green', '9': 'green', '10': 'green' } def unnormalize_box(bbox, width, height): return [ width * (bbox[0] / 1000), height * (bbox[1] / 1000), width * (bbox[2] / 1000), height * (bbox[3] / 1000), ] def iob_to_label(label): return label def process_image(image): width, height = image.size encoding = processor(image, truncation=True, return_offsets_mapping=True, return_tensors="pt") offset_mapping = encoding.pop('offset_mapping') outputs = model(**encoding) predictions = outputs.logits.argmax(-1).squeeze().tolist() token_boxes = encoding.bbox.squeeze().tolist() is_subword = np.array(offset_mapping.squeeze().tolist())[:, 0] != 0 true_predictions = [id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx]] true_boxes = [unnormalize_box(box, width, height) for idx, box in enumerate(token_boxes) if not is_subword[idx]] draw = ImageDraw.Draw(image) font = ImageFont.load_default() for prediction, box in zip(true_predictions, true_boxes): predicted_label = iob_to_label(prediction) draw.rectangle(box, outline=label2color[predicted_label]) draw.text((box[0] + 10, box[1] - 10), text=predicted_label, fill=label2color[predicted_label], font=font) return image st.title("Language Levels Extraction using LayoutLMv3 Model") st.write("Use this application to predict language levels in CVs.") uploaded_file = st.file_uploader("Choose an image...", type="png") if uploaded_file is not None: image = Image.open(uploaded_file) st.image(image, caption='Uploaded Image', use_column_width=True) if st.button('Predict'): annotated_image = process_image(image) st.image(annotated_image, caption='Annotated Image', use_column_width=True)