Spaces:
Sleeping
Sleeping
Create yolo_text_extraction.py
Browse files- yolo_text_extraction.py +98 -0
yolo_text_extraction.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ultralytics import YOLO
|
2 |
+
from PIL import Image,ImageDraw
|
3 |
+
import numpy as np
|
4 |
+
from PIL import ImageFilter
|
5 |
+
|
6 |
+
from dotenv import load_dotenv
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
from ocr_functions import paddle_ocr,textract_ocr,tesseract_ocr
|
10 |
+
from pdf2image import convert_from_path
|
11 |
+
|
12 |
+
|
13 |
+
model =YOLO("yolo_model/best.pt")
|
14 |
+
|
15 |
+
|
16 |
+
def check_intersection(bbox1, bbox2):
|
17 |
+
# Check for intersection between two bounding boxes
|
18 |
+
x1, y1, x2, y2 = bbox1
|
19 |
+
x3, y3, x4, y4 = bbox2
|
20 |
+
return not (x3 > x2 or x4 < x1 or y3 > y2 or y4 < y1)
|
21 |
+
|
22 |
+
def check_inclusion(bbox1, bbox2):
|
23 |
+
# Check if one bounding box is completely inside another
|
24 |
+
x1, y1, x2, y2 = bbox1
|
25 |
+
x3, y3, x4, y4 = bbox2
|
26 |
+
return x1 >= x3 and y1 >= y3 and x2 <= x4 and y2 <= y4
|
27 |
+
|
28 |
+
def union_bbox(bbox1, bbox2):
|
29 |
+
# Calculate the union of two bounding boxes
|
30 |
+
x1 = min(bbox1[0], bbox2[0])
|
31 |
+
y1 = min(bbox1[1], bbox2[1])
|
32 |
+
x2 = max(bbox1[2], bbox2[2])
|
33 |
+
y2 = max(bbox1[3], bbox2[3])
|
34 |
+
return [x1, y1, x2, y2]
|
35 |
+
|
36 |
+
def filter_bboxes(bboxes):
|
37 |
+
# Iterate through each pair of bounding boxes and filter out those that intersect or are completely contained within another
|
38 |
+
filtered_bboxes = []
|
39 |
+
for bbox1 in bboxes:
|
40 |
+
is_valid = True
|
41 |
+
for bbox2 in filtered_bboxes:
|
42 |
+
if check_intersection(bbox1, bbox2):
|
43 |
+
# If the two bounding boxes intersect, compute their union
|
44 |
+
bbox1 = union_bbox(bbox1, bbox2)
|
45 |
+
# Mark the current bbox as invalid to be removed
|
46 |
+
is_valid = False
|
47 |
+
break
|
48 |
+
elif check_inclusion(bbox1, bbox2):
|
49 |
+
# If bbox1 is completely contained within bbox2, mark bbox1 as invalid to be removed
|
50 |
+
is_valid = False
|
51 |
+
break
|
52 |
+
if is_valid:
|
53 |
+
filtered_bboxes.append(bbox1)
|
54 |
+
return filtered_bboxes
|
55 |
+
|
56 |
+
|
57 |
+
|
58 |
+
|
59 |
+
def draw_bboxes(image, bboxes ):
|
60 |
+
draw = ImageDraw.Draw(image)
|
61 |
+
for bbox in bboxes:
|
62 |
+
x1, y1, x2, y2 = bbox
|
63 |
+
|
64 |
+
x1,y1,x2,y2 = int(x1),int(y1),int(x2),int(y2)
|
65 |
+
draw.rectangle([(x1, y1), (x2, y2)], outline=(255, 0, 0), width=2)
|
66 |
+
|
67 |
+
|
68 |
+
|
69 |
+
def extract_image(image,box):
|
70 |
+
x1, y1, x2, y2 = box
|
71 |
+
cropped_image = image.crop((x1, y1, x2, y2))
|
72 |
+
|
73 |
+
|
74 |
+
def text_image(image):
|
75 |
+
image = image.convert("RGB")
|
76 |
+
image = image.filter(ImageFilter.MedianFilter(3))
|
77 |
+
image_np = np.array(image)
|
78 |
+
result = model.predict(source=image_np, conf=0.10, save=False)
|
79 |
+
names = result[0].names
|
80 |
+
data = result[0].boxes.data.numpy()
|
81 |
+
xyxy = data[:, :]
|
82 |
+
bboxes = data[:, 0:4].tolist()
|
83 |
+
bboxes_filter = filter_bboxes(bboxes)
|
84 |
+
image_box = data[data[:, 5] == 11]
|
85 |
+
extract_image(image, image_box[0, 0:4])
|
86 |
+
draw_bboxes(image, bboxes_filter)
|
87 |
+
image.save("output.png")
|
88 |
+
texts = [textract_ocr(image, bbox) for bbox in bboxes_filter]
|
89 |
+
return "\n------section-------\n"+"\n------section-------\n".join(texts)
|
90 |
+
|
91 |
+
|
92 |
+
|
93 |
+
def pdf_to_text(pdf_file):
|
94 |
+
text = ""
|
95 |
+
images = convert_from_path(pdf_file)
|
96 |
+
for image in images :
|
97 |
+
text = text + text_image(image) + "\n"
|
98 |
+
return text
|