Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,70 +1,46 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
2 |
from transformers import pipeline
|
3 |
import torch
|
4 |
-
import numpy as np
|
5 |
-
import os
|
6 |
-
from functools import lru_cache
|
7 |
|
8 |
-
# Initialize
|
9 |
try:
|
10 |
device = 0 if torch.cuda.is_available() else -1
|
11 |
-
tts_pipeline = pipeline("text-to-speech", model="microsoft/speecht5_tts", device=device)
|
12 |
-
except Exception as e:
|
13 |
-
print(f"Error initializing TTS pipeline: {e}")
|
14 |
-
tts_pipeline = None
|
15 |
-
|
16 |
-
# Initialize text-to-audio pipeline
|
17 |
-
try:
|
18 |
text_to_audio = pipeline("text-to-audio", model="facebook/musicgen-small", device=device)
|
19 |
except Exception as e:
|
20 |
print(f"Error initializing text-to-audio pipeline: {e}")
|
21 |
text_to_audio = None
|
22 |
|
23 |
-
|
24 |
-
def generate_speech_cached(text, emotion):
|
25 |
try:
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
return (
|
30 |
-
else:
|
31 |
-
return None, "TTS pipeline not available. Check logs for initialization error."
|
32 |
except Exception as e:
|
33 |
return None, f"Error in speech generation: {str(e)}"
|
34 |
|
35 |
-
|
36 |
-
def generate_sound_cached(text):
|
37 |
try:
|
38 |
if text_to_audio is not None:
|
39 |
audio = text_to_audio(text, forward_params={"do_sample": True, "max_new_tokens": 256})
|
40 |
-
|
|
|
|
|
41 |
else:
|
42 |
-
return None,
|
43 |
except Exception as e:
|
44 |
-
return None,
|
45 |
-
|
46 |
-
def generate_speech(text, emotion):
|
47 |
-
result, message = generate_speech_cached(text, emotion)
|
48 |
-
if result:
|
49 |
-
audio, sampling_rate = result
|
50 |
-
return (gr.Audio(value=(sampling_rate, audio)), message)
|
51 |
-
else:
|
52 |
-
return (None, message)
|
53 |
-
|
54 |
-
def generate_sound(text):
|
55 |
-
audio, sampling_rate, message = generate_sound_cached(text)
|
56 |
-
if audio is not None:
|
57 |
-
return (gr.Audio(value=(sampling_rate, audio)), message)
|
58 |
-
else:
|
59 |
-
return (None, message)
|
60 |
|
61 |
# Gradio interface
|
62 |
with gr.Blocks() as iface:
|
63 |
-
gr.Markdown("#
|
64 |
|
65 |
with gr.Tab("Text-to-Speech"):
|
66 |
text_input = gr.Textbox(label="Enter text for speech generation")
|
67 |
-
|
68 |
speech_button = gr.Button("Generate Speech")
|
69 |
speech_output = gr.Audio(label="Generated Speech")
|
70 |
speech_message = gr.Textbox(label="Message")
|
@@ -75,7 +51,7 @@ with gr.Blocks() as iface:
|
|
75 |
sound_output = gr.Audio(label="Generated Sound")
|
76 |
sound_message = gr.Textbox(label="Message")
|
77 |
|
78 |
-
speech_button.click(generate_speech, inputs=[text_input,
|
79 |
sound_button.click(generate_sound, inputs=[sound_input], outputs=[sound_output, sound_message])
|
80 |
|
81 |
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from gtts import gTTS
|
3 |
+
import os
|
4 |
+
import tempfile
|
5 |
from transformers import pipeline
|
6 |
import torch
|
|
|
|
|
|
|
7 |
|
8 |
+
# Initialize text-to-audio pipeline for sound generation
|
9 |
try:
|
10 |
device = 0 if torch.cuda.is_available() else -1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
text_to_audio = pipeline("text-to-audio", model="facebook/musicgen-small", device=device)
|
12 |
except Exception as e:
|
13 |
print(f"Error initializing text-to-audio pipeline: {e}")
|
14 |
text_to_audio = None
|
15 |
|
16 |
+
def generate_speech(text, language):
|
|
|
17 |
try:
|
18 |
+
tts = gTTS(text=text, lang=language)
|
19 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as fp:
|
20 |
+
tts.save(fp.name)
|
21 |
+
return gr.Audio(value=fp.name, type="filepath"), "Speech generated successfully"
|
|
|
|
|
22 |
except Exception as e:
|
23 |
return None, f"Error in speech generation: {str(e)}"
|
24 |
|
25 |
+
def generate_sound(text):
|
|
|
26 |
try:
|
27 |
if text_to_audio is not None:
|
28 |
audio = text_to_audio(text, forward_params={"do_sample": True, "max_new_tokens": 256})
|
29 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as fp:
|
30 |
+
audio['audio'].save(fp.name)
|
31 |
+
return gr.Audio(value=fp.name, type="filepath"), "Sound generated successfully"
|
32 |
else:
|
33 |
+
return None, "Text-to-audio pipeline not available. Check logs for initialization error."
|
34 |
except Exception as e:
|
35 |
+
return None, f"Error in sound generation: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
# Gradio interface
|
38 |
with gr.Blocks() as iface:
|
39 |
+
gr.Markdown("# Lightweight Text-to-Speech and Text-to-Sound Generation Tool")
|
40 |
|
41 |
with gr.Tab("Text-to-Speech"):
|
42 |
text_input = gr.Textbox(label="Enter text for speech generation")
|
43 |
+
language_input = gr.Dropdown(["en", "es", "fr", "de", "it"], label="Select Language", value="en")
|
44 |
speech_button = gr.Button("Generate Speech")
|
45 |
speech_output = gr.Audio(label="Generated Speech")
|
46 |
speech_message = gr.Textbox(label="Message")
|
|
|
51 |
sound_output = gr.Audio(label="Generated Sound")
|
52 |
sound_message = gr.Textbox(label="Message")
|
53 |
|
54 |
+
speech_button.click(generate_speech, inputs=[text_input, language_input], outputs=[speech_output, speech_message])
|
55 |
sound_button.click(generate_sound, inputs=[sound_input], outputs=[sound_output, sound_message])
|
56 |
|
57 |
iface.launch()
|