Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,52 +1,73 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import pipeline
|
3 |
import torch
|
4 |
from TTS.api import TTS
|
5 |
-
|
6 |
-
# Initialize Whisper for speech recognition
|
7 |
-
asr = pipeline("automatic-speech-recognition", model="openai/whisper-base")
|
8 |
|
9 |
# Initialize TTS model
|
10 |
-
# Note: We're using a try-except block to handle potential issues with GPU availability
|
11 |
try:
|
12 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
13 |
-
tts = TTS("tts_models/
|
14 |
except Exception as e:
|
15 |
print(f"Error initializing TTS model: {e}")
|
16 |
tts = None
|
17 |
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
try:
|
20 |
-
# Transcribe audio using Whisper
|
21 |
-
result = asr(audio_file)
|
22 |
-
transcription = result["text"]
|
23 |
-
|
24 |
-
# Generate voice over with selected emotion
|
25 |
if tts is not None:
|
26 |
-
|
27 |
-
|
|
|
|
|
28 |
else:
|
29 |
return (None, "TTS model not available. Check logs for initialization error.")
|
30 |
except Exception as e:
|
31 |
-
return (None, f"Error: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
# Gradio interface
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
gr.
|
39 |
-
|
40 |
-
|
41 |
-
gr.Audio(label="Generated
|
42 |
-
gr.Textbox(label="
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
)
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline, AutoProcessor, MusicgenForConditionalGeneration
|
3 |
import torch
|
4 |
from TTS.api import TTS
|
5 |
+
import scipy
|
|
|
|
|
6 |
|
7 |
# Initialize TTS model
|
|
|
8 |
try:
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
+
tts = TTS("tts_models/en/ljspeech/tacotron2-DDC").to(device)
|
11 |
except Exception as e:
|
12 |
print(f"Error initializing TTS model: {e}")
|
13 |
tts = None
|
14 |
|
15 |
+
# Initialize Musicgen model for sound generation
|
16 |
+
try:
|
17 |
+
processor = AutoProcessor.from_pretrained("facebook/musicgen-small")
|
18 |
+
model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small")
|
19 |
+
except Exception as e:
|
20 |
+
print(f"Error initializing Musicgen model: {e}")
|
21 |
+
processor = None
|
22 |
+
model = None
|
23 |
+
|
24 |
+
def generate_speech(text, emotion):
|
25 |
try:
|
|
|
|
|
|
|
|
|
|
|
26 |
if tts is not None:
|
27 |
+
# Note: emotion parameter is not used in this basic example
|
28 |
+
# You may need a different TTS model or post-processing to incorporate emotion
|
29 |
+
speech = tts.tts(text=text)
|
30 |
+
return (gr.Audio(value=(22050, speech), type="numpy"), "Speech generated successfully")
|
31 |
else:
|
32 |
return (None, "TTS model not available. Check logs for initialization error.")
|
33 |
except Exception as e:
|
34 |
+
return (None, f"Error in speech generation: {str(e)}")
|
35 |
+
|
36 |
+
def generate_sound(text):
|
37 |
+
try:
|
38 |
+
if processor is not None and model is not None:
|
39 |
+
inputs = processor(
|
40 |
+
text=[text],
|
41 |
+
padding=True,
|
42 |
+
return_tensors="pt",
|
43 |
+
)
|
44 |
+
audio_values = model.generate(**inputs, max_new_tokens=256)
|
45 |
+
sampling_rate = model.config.audio_encoder.sampling_rate
|
46 |
+
scipy.io.wavfile.write("output.wav", rate=sampling_rate, data=audio_values[0, 0].numpy())
|
47 |
+
return (gr.Audio(value="output.wav", type="filepath"), "Sound generated successfully")
|
48 |
+
else:
|
49 |
+
return (None, "Musicgen model not available. Check logs for initialization error.")
|
50 |
+
except Exception as e:
|
51 |
+
return (None, f"Error in sound generation: {str(e)}")
|
52 |
|
53 |
# Gradio interface
|
54 |
+
with gr.Blocks() as iface:
|
55 |
+
gr.Markdown("# Text-to-Speech and Text-to-Sound Generation Tool")
|
56 |
+
|
57 |
+
with gr.Tab("Text-to-Speech"):
|
58 |
+
text_input = gr.Textbox(label="Enter text for speech generation")
|
59 |
+
emotion_input = gr.Dropdown(["Happy", "Sad", "Angry", "Neutral"], label="Select Emotion")
|
60 |
+
speech_button = gr.Button("Generate Speech")
|
61 |
+
speech_output = gr.Audio(label="Generated Speech")
|
62 |
+
speech_message = gr.Textbox(label="Message")
|
63 |
+
|
64 |
+
with gr.Tab("Text-to-Sound"):
|
65 |
+
sound_input = gr.Textbox(label="Enter text description for sound generation")
|
66 |
+
sound_button = gr.Button("Generate Sound")
|
67 |
+
sound_output = gr.Audio(label="Generated Sound")
|
68 |
+
sound_message = gr.Textbox(label="Message")
|
69 |
+
|
70 |
+
speech_button.click(generate_speech, inputs=[text_input, emotion_input], outputs=[speech_output, speech_message])
|
71 |
+
sound_button.click(generate_sound, inputs=[sound_input], outputs=[sound_output, sound_message])
|
72 |
+
|
73 |
+
iface.launch()
|