Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,13 @@
|
|
1 |
|
2 |
from langchain.llms import CTransformers
|
3 |
from langchain.agents import Tool
|
|
|
4 |
from langchain.chains import RetrievalQA
|
5 |
from langchain.text_splitter import CharacterTextSplitter
|
6 |
from langchain_community.document_loaders import PyPDFLoader
|
7 |
from langchain_community.vectorstores import FAISS
|
8 |
from langchain.embeddings import HuggingFaceBgeEmbeddings
|
|
|
9 |
import streamlit as st
|
10 |
|
11 |
|
@@ -18,39 +20,10 @@ def main():
|
|
18 |
|
19 |
st.title("Document Comparison with Q&A using Agents")
|
20 |
|
21 |
-
config = {
|
22 |
-
'max_new_tokens': 1024,
|
23 |
-
'repetition_penalty': 1.1,
|
24 |
-
'temperature': 0.1,
|
25 |
-
'top_k': 50,
|
26 |
-
'top_p': 0.9,
|
27 |
-
'stream': True,
|
28 |
-
'threads': int(os.cpu_count() / 2)
|
29 |
-
}
|
30 |
-
|
31 |
-
llm = CTransformers(
|
32 |
-
model="TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF",
|
33 |
-
model_file="mistral-7b-instruct-v0.2.Q4_0.gguf",
|
34 |
-
model_type="mistral",
|
35 |
-
lib="avx2", #for CPU use
|
36 |
-
**config
|
37 |
-
)
|
38 |
-
|
39 |
-
print("LLM Initialized...")
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
model_name = "BAAI/bge-large-en"
|
44 |
-
model_kwargs = {'device': 'cpu'}
|
45 |
-
encode_kwargs = {'normalize_embeddings': False}
|
46 |
-
embeddings = HuggingFaceBgeEmbeddings(
|
47 |
-
model_name=model_name,
|
48 |
-
model_kwargs=model_kwargs,
|
49 |
-
encode_kwargs=encode_kwargs
|
50 |
-
)
|
51 |
|
52 |
# Upload files
|
53 |
-
uploaded_files = st.file_uploader("Upload your documents", type=["pdf], accept_multiple_files=True)
|
54 |
loaded_documents = []
|
55 |
|
56 |
if uploaded_files:
|
@@ -76,10 +49,90 @@ def main():
|
|
76 |
loader = loader_class(file_path, **loader_args)
|
77 |
loaded_documents.extend(loader.load())
|
78 |
else:
|
79 |
-
st.warning(f"Unsupported file extension: {ext}")
|
|
|
|
|
|
|
|
|
80 |
|
81 |
|
82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
|
85 |
if __name__ == "__main__":
|
|
|
1 |
|
2 |
from langchain.llms import CTransformers
|
3 |
from langchain.agents import Tool
|
4 |
+
from langchain.agents import AgentType, initialize_agent
|
5 |
from langchain.chains import RetrievalQA
|
6 |
from langchain.text_splitter import CharacterTextSplitter
|
7 |
from langchain_community.document_loaders import PyPDFLoader
|
8 |
from langchain_community.vectorstores import FAISS
|
9 |
from langchain.embeddings import HuggingFaceBgeEmbeddings
|
10 |
+
|
11 |
import streamlit as st
|
12 |
|
13 |
|
|
|
20 |
|
21 |
st.title("Document Comparison with Q&A using Agents")
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
# Upload files
|
26 |
+
uploaded_files = st.file_uploader("Upload your documents", type=["pdf"], accept_multiple_files=True)
|
27 |
loaded_documents = []
|
28 |
|
29 |
if uploaded_files:
|
|
|
49 |
loader = loader_class(file_path, **loader_args)
|
50 |
loaded_documents.extend(loader.load())
|
51 |
else:
|
52 |
+
st.warning(f"Unsupported file extension: {ext}, the app currently only supports 'pdf'")
|
53 |
+
|
54 |
+
st.write("Ask question to get comparison from the documents:")
|
55 |
+
query = st.text_input("Ask a question:")
|
56 |
+
|
57 |
|
58 |
|
59 |
|
60 |
+
if st.button("Get Answer"):
|
61 |
+
if query:
|
62 |
+
# Load model, set prompts, create vector database, and retrieve answer
|
63 |
+
try:
|
64 |
+
start = timeit.default_timer()
|
65 |
+
config = {
|
66 |
+
'max_new_tokens': 1024,
|
67 |
+
'repetition_penalty': 1.1,
|
68 |
+
'temperature': 0.1,
|
69 |
+
'top_k': 50,
|
70 |
+
'top_p': 0.9,
|
71 |
+
'stream': True,
|
72 |
+
'threads': int(os.cpu_count() / 2)
|
73 |
+
}
|
74 |
+
|
75 |
+
llm = CTransformers(
|
76 |
+
model="TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF",
|
77 |
+
model_file="mistral-7b-instruct-v0.2.Q4_0.gguf",
|
78 |
+
model_type="mistral",
|
79 |
+
lib="avx2", #for CPU use
|
80 |
+
**config
|
81 |
+
)
|
82 |
+
|
83 |
+
print("LLM Initialized...")
|
84 |
+
|
85 |
+
|
86 |
+
|
87 |
+
model_name = "BAAI/bge-large-en"
|
88 |
+
model_kwargs = {'device': 'cpu'}
|
89 |
+
encode_kwargs = {'normalize_embeddings': False}
|
90 |
+
embeddings = HuggingFaceBgeEmbeddings(
|
91 |
+
model_name=model_name,
|
92 |
+
model_kwargs=model_kwargs,
|
93 |
+
encode_kwargs=encode_kwargs
|
94 |
+
)
|
95 |
+
|
96 |
+
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
|
97 |
+
chunked_documents = text_splitter.split_documents(loaded_documents)
|
98 |
+
retriever = FAISS.from_documents(docs, embeddings).as_retriever()
|
99 |
+
|
100 |
+
# Wrap retrievers in a Tool
|
101 |
+
tools.append(
|
102 |
+
Tool(
|
103 |
+
name="Comparison tool",
|
104 |
+
description=f"useful when you want to answer questions about the uploaded documents}",
|
105 |
+
func=RetrievalQA.from_chain_type(llm=llm, retriever=retriever),
|
106 |
+
)
|
107 |
+
|
108 |
+
agent = initialize_agent(
|
109 |
+
tools=tools,
|
110 |
+
llm=llm,
|
111 |
+
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION
|
112 |
+
verbose=True
|
113 |
+
)
|
114 |
+
|
115 |
+
response = agent.run(query")
|
116 |
+
|
117 |
+
end = timeit.default_timer()
|
118 |
+
st.write("Elapsed time:")
|
119 |
+
st.write(end - start)
|
120 |
+
|
121 |
+
st.write("Bot Response:")
|
122 |
+
st.write(response)
|
123 |
+
|
124 |
+
|
125 |
+
|
126 |
+
except Exception as e:
|
127 |
+
st.error(f"An error occurred: {str(e)}")
|
128 |
+
else:
|
129 |
+
st.warning("Please enter a question.")
|
130 |
+
|
131 |
+
|
132 |
+
|
133 |
+
)
|
134 |
+
|
135 |
+
)
|
136 |
|
137 |
|
138 |
if __name__ == "__main__":
|