File size: 788 Bytes
1a838e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
import gradio as gr
from transformers.utils import logging
logging.set_verbosity_error()

import warnings
warnings.filterwarnings("ignore", message="Using the model-agnostic default `max_length`")

from transformers import BlipForQuestionAnswering
from transformers import AutoProcessor

def qa(inputs):
    model = BlipForQuestionAnswering.from_pretrained(
    "./models/Salesforce/blip-vqa-base")
    processor = AutoProcessor.from_pretrained(
    "./models/Salesforce/blip-vqa-base")
    inputs = processor(image, question, return_tensors="pt")

    out = model.generate(**inputs)

    return processor.decode(out[0], skip_special_tokens=True)

# def greet(name):
#     return "Hello " + name + "!!"

iface = gr.Interface(fn=qa, inputs=["image","text"], outputs="text")
iface.launch()