captain-awesome commited on
Commit
eb99c4b
·
1 Parent(s): 4283189

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -6
app.py CHANGED
@@ -152,7 +152,7 @@ def create_vector_database(loaded_documents):
152
  """
153
 
154
  # Split loaded documents into chunks
155
- text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=40)
156
  chunked_documents = text_splitter.split_documents(loaded_documents)
157
 
158
  # Initialize HuggingFace embeddings
@@ -229,7 +229,7 @@ def create_chain(llm, prompt, CONDENSE_QUESTION_PROMPT, db):
229
  chain_type="stuff",
230
  retriever=db.as_retriever(search_kwargs={"k": 3}),
231
  return_source_documents=True,
232
- max_tokens_limit=512,
233
  combine_docs_chain_kwargs={"prompt": prompt},
234
  condense_question_prompt=CONDENSE_QUESTION_PROMPT,
235
  memory=memory,
@@ -314,7 +314,7 @@ def main():
314
  # Check if the extension is in FILE_LOADER_MAPPING
315
  if ext in FILE_LOADER_MAPPING:
316
  loader_class, loader_args = FILE_LOADER_MAPPING[ext]
317
- st.write(f"loader_class: {loader_class}")
318
 
319
  # Save the uploaded file to the temporary directory
320
  file_path = os.path.join(td, uploaded_file.name)
@@ -327,7 +327,7 @@ def main():
327
  else:
328
  st.warning(f"Unsupported file extension: {ext}")
329
 
330
- st.write(f"loaded_documents: {loaded_documents}")
331
  st.write("Chat with the Document:")
332
  query = st.text_input("Ask a question:")
333
 
@@ -339,9 +339,9 @@ def main():
339
  prompt = set_custom_prompt()
340
  CONDENSE_QUESTION_PROMPT = set_custom_prompt_condense()
341
  db = create_vector_database(loaded_documents)
342
- st.write(f"db: {db}")
343
  response = retrieve_bot_answer(query,loaded_documents)
344
- st.write(f"response: {response}")
345
  # Display bot response
346
  st.write("Bot Response:")
347
  st.write(response)
 
152
  """
153
 
154
  # Split loaded documents into chunks
155
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=40, length_function = len)
156
  chunked_documents = text_splitter.split_documents(loaded_documents)
157
 
158
  # Initialize HuggingFace embeddings
 
229
  chain_type="stuff",
230
  retriever=db.as_retriever(search_kwargs={"k": 3}),
231
  return_source_documents=True,
232
+ max_tokens_limit=256,
233
  combine_docs_chain_kwargs={"prompt": prompt},
234
  condense_question_prompt=CONDENSE_QUESTION_PROMPT,
235
  memory=memory,
 
314
  # Check if the extension is in FILE_LOADER_MAPPING
315
  if ext in FILE_LOADER_MAPPING:
316
  loader_class, loader_args = FILE_LOADER_MAPPING[ext]
317
+ # st.write(f"loader_class: {loader_class}")
318
 
319
  # Save the uploaded file to the temporary directory
320
  file_path = os.path.join(td, uploaded_file.name)
 
327
  else:
328
  st.warning(f"Unsupported file extension: {ext}")
329
 
330
+ # st.write(f"loaded_documents: {loaded_documents}")
331
  st.write("Chat with the Document:")
332
  query = st.text_input("Ask a question:")
333
 
 
339
  prompt = set_custom_prompt()
340
  CONDENSE_QUESTION_PROMPT = set_custom_prompt_condense()
341
  db = create_vector_database(loaded_documents)
342
+ # st.write(f"db: {db}")
343
  response = retrieve_bot_answer(query,loaded_documents)
344
+ # st.write(f"response: {response}")
345
  # Display bot response
346
  st.write("Bot Response:")
347
  st.write(response)