Spaces:
Sleeping
Sleeping
Commit
·
ff2a8fc
1
Parent(s):
896c0f7
add baseball card inventory app
Browse files- .gitignore +2 -0
- app.py +161 -0
- develop_app.ipynb +930 -0
- requirements.txt +1 -0
- sample_data/sample_data_1.txt +11 -0
- sample_data/sample_data_2.txt +5 -0
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
.DS_Store
|
2 |
+
.ipynb_checkpoints
|
app.py
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
|
3 |
+
import pandas as pd
|
4 |
+
import streamlit as st
|
5 |
+
|
6 |
+
|
7 |
+
@st.cache_data
|
8 |
+
def load_data(file, skiprows=0, encoding="ISO-8859-1"):
|
9 |
+
df = pd.read_csv(file, sep="\t", skiprows=skiprows, encoding=encoding)
|
10 |
+
return df
|
11 |
+
|
12 |
+
|
13 |
+
@st.cache_data
|
14 |
+
def convert_df(df):
|
15 |
+
return df.to_csv(sep="\t", index=False).encode('utf-8')
|
16 |
+
|
17 |
+
|
18 |
+
@st.cache_data
|
19 |
+
def extract_surname(name):
|
20 |
+
"""Add first name and last name columns"""
|
21 |
+
non_names = ['1992 Hoops set', '2016 Topps Now Highlights', 'Fox-Aparicio',
|
22 |
+
'1960 World Series', 'Mantle/Berra', 'Ashburn-Mays', 'Ruth/Aaron/Mays',
|
23 |
+
'Mays/Snider', 'New York Yankees', 'Checklist']
|
24 |
+
if not isinstance(name, str):
|
25 |
+
return None, None
|
26 |
+
if name == "G Hill Tribute":
|
27 |
+
return "G", "Hill"
|
28 |
+
if name == 'Ken Griffey, Jr.' or name=='Ken Griffey Jr.':
|
29 |
+
return "Ken", "Griffey Jr."
|
30 |
+
elif 'Vladimir Guerrero Jr.' in name:
|
31 |
+
return "Vladimir", 'Guerrero Jr.'
|
32 |
+
elif any(item in name for item in non_names):
|
33 |
+
return 'multiple', 'multiple'
|
34 |
+
elif "," in name:
|
35 |
+
return "multiple", 'multiple'
|
36 |
+
else:
|
37 |
+
if "-" in name or "/" in name:
|
38 |
+
print(name)
|
39 |
+
raise Exception("Found suspected multiple-name card!")
|
40 |
+
return " ".join(name.split()[:-1]), name.split()[-1]
|
41 |
+
|
42 |
+
|
43 |
+
@st.cache_data
|
44 |
+
def add_grading_status(grader):
|
45 |
+
"""Add graded column (yes/no)"""
|
46 |
+
if isinstance(grader, str):
|
47 |
+
return "Yes"
|
48 |
+
elif math.isnan(grader):
|
49 |
+
return "No"
|
50 |
+
else:
|
51 |
+
print(grader)
|
52 |
+
raise Exception("Found unexpected item in Grader column!")
|
53 |
+
|
54 |
+
|
55 |
+
@st.cache_data
|
56 |
+
def get_default_sort_order(df):
|
57 |
+
default_cols = [c for c in ["Type", "Graded", "Sport", "Last Name", "Year"] if \
|
58 |
+
c in df.columns.values]
|
59 |
+
default_sort_order = [{"column" : item, "order": i }for i, item in \
|
60 |
+
enumerate(default_cols)]
|
61 |
+
for col_name in df.columns.values:
|
62 |
+
if col_name not in default_cols:
|
63 |
+
default_sort_order.append({"column" : col_name, "order": None})
|
64 |
+
return pd.DataFrame(default_sort_order)
|
65 |
+
|
66 |
+
|
67 |
+
@st.cache_data
|
68 |
+
def get_sort_order(edited_sort_order):
|
69 |
+
sort_columns = edited_sort_order.dropna(subset="order")
|
70 |
+
cols = sort_columns.column.tolist()
|
71 |
+
orders = sort_columns.order.tolist()
|
72 |
+
return [col for (col, _) in sorted(zip(cols, orders), key=lambda x: x[1])]
|
73 |
+
|
74 |
+
|
75 |
+
@st.cache_data
|
76 |
+
def add_graded_column(df):
|
77 |
+
if "Grader" in df:
|
78 |
+
df["Graded"] = df['Grader'].apply(lambda x: add_grading_status(x))
|
79 |
+
df["Graded"] = pd.Categorical(df["Graded"], categories = ["Yes", "No"]) # sets sort order
|
80 |
+
else:
|
81 |
+
st.warning('Input data must have a "Grader" column'
|
82 |
+
' in order to create a "Graded" column', icon="⚠️")
|
83 |
+
return df
|
84 |
+
|
85 |
+
|
86 |
+
@st.cache_data
|
87 |
+
def add_multiple_column(df):
|
88 |
+
if "Quantity" in df:
|
89 |
+
df['Multiple'] = df['Quantity'].apply(lambda x: "Yes" if x>1 else "No")
|
90 |
+
df["Multiple"] = pd.Categorical(df["Multiple"], categories = ["Yes", "No"])
|
91 |
+
df = df.drop(columns=['Quantity'])
|
92 |
+
else:
|
93 |
+
st.warning('Input data must have a "Quantity" column'
|
94 |
+
' in order to do this', icon="⚠️")
|
95 |
+
return df
|
96 |
+
|
97 |
+
|
98 |
+
@st.cache_data
|
99 |
+
def add_first_and_last_name_columns(df):
|
100 |
+
if "Player Name" in df:
|
101 |
+
st.write("breaking up names")
|
102 |
+
df['First Name'] = df['Player Name'].apply(lambda x: extract_surname(x)[0])
|
103 |
+
df['Last Name'] = df['Player Name'].apply(lambda x: extract_surname(x)[-1])
|
104 |
+
else:
|
105 |
+
st.warning('Input data must have a "Player Name" column'
|
106 |
+
' in order to extract first and last names', icon="⚠️")
|
107 |
+
return df
|
108 |
+
|
109 |
+
|
110 |
+
if __name__ == "__main__":
|
111 |
+
st.markdown("# Baseball card data wrangling")
|
112 |
+
st.write("Upload a tab-separated spreadsheet. The first row should contain column"
|
113 |
+
" names.")
|
114 |
+
input_file = st.file_uploader("Choose a file", type=['txt', 'csv', 'tsv', 'xlsx'])
|
115 |
+
|
116 |
+
if st.checkbox("Use sample data 1 (baseball cards)"):
|
117 |
+
input_file = "sample_data/sample_data_1.txt"
|
118 |
+
elif st.checkbox("Use sample data 2 (big cats)"):
|
119 |
+
input_file = "sample_data/sample_data_2.txt"
|
120 |
+
|
121 |
+
if input_file is not None:
|
122 |
+
df = load_data(input_file)
|
123 |
+
st.subheader('Input data')
|
124 |
+
st.write(df)
|
125 |
+
|
126 |
+
if st.checkbox('Create first name and last name columns'):
|
127 |
+
df = add_first_and_last_name_columns(df)
|
128 |
+
|
129 |
+
if st.checkbox('Add graded column'):
|
130 |
+
df = add_graded_column(df)
|
131 |
+
|
132 |
+
if st.checkbox('Create "multiple" column and remove quantity'):
|
133 |
+
df = add_multiple_column(df)
|
134 |
+
|
135 |
+
if st.checkbox("Change sort order"):
|
136 |
+
st.subheader("Column sort order")
|
137 |
+
st.write("Edit the sort priority by changing the numbers in the table below."
|
138 |
+
" Click the sort button below when you're done.")
|
139 |
+
default_sort_order = get_default_sort_order(df)
|
140 |
+
edited_sort_order = st.data_editor(default_sort_order)
|
141 |
+
|
142 |
+
do_sort = st.button("Sort")
|
143 |
+
|
144 |
+
if do_sort:
|
145 |
+
col_order = get_sort_order(edited_sort_order)
|
146 |
+
st.subheader('Sorted output data')
|
147 |
+
df = df.sort_values(by=col_order).reset_index(drop=True)
|
148 |
+
|
149 |
+
|
150 |
+
st.subheader('Output data')
|
151 |
+
st.write(df)
|
152 |
+
|
153 |
+
output_file = st.text_input("Enter name for the file to be downloaded", value="cards_output.csv")
|
154 |
+
if output_file is not None:
|
155 |
+
csv = convert_df(df)
|
156 |
+
st.download_button("Download data as CSV", csv, file_name=output_file)
|
157 |
+
|
158 |
+
|
159 |
+
|
160 |
+
|
161 |
+
|
develop_app.ipynb
ADDED
@@ -0,0 +1,930 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 7,
|
6 |
+
"id": "95956dfc-c447-4dcb-a3c4-563ec91e9211",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"import pandas as pd"
|
11 |
+
]
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"cell_type": "code",
|
15 |
+
"execution_count": 8,
|
16 |
+
"id": "8724a364-ae3a-41a1-9b4a-68d53c452d83",
|
17 |
+
"metadata": {},
|
18 |
+
"outputs": [],
|
19 |
+
"source": [
|
20 |
+
"infile = \"/Users/carolanderson/Dropbox/Existing2022CardInventoryWithNewBoxes2023.txt\"\n",
|
21 |
+
"df= pd.read_csv(infile, sep=\"\\t\", encoding=\"ISO-8859-1\")"
|
22 |
+
]
|
23 |
+
},
|
24 |
+
{
|
25 |
+
"cell_type": "code",
|
26 |
+
"execution_count": 9,
|
27 |
+
"id": "660ed1bf-cf66-495e-a829-cfe37861aa3f",
|
28 |
+
"metadata": {},
|
29 |
+
"outputs": [
|
30 |
+
{
|
31 |
+
"data": {
|
32 |
+
"text/html": [
|
33 |
+
"<div>\n",
|
34 |
+
"<style scoped>\n",
|
35 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
36 |
+
" vertical-align: middle;\n",
|
37 |
+
" }\n",
|
38 |
+
"\n",
|
39 |
+
" .dataframe tbody tr th {\n",
|
40 |
+
" vertical-align: top;\n",
|
41 |
+
" }\n",
|
42 |
+
"\n",
|
43 |
+
" .dataframe thead th {\n",
|
44 |
+
" text-align: right;\n",
|
45 |
+
" }\n",
|
46 |
+
"</style>\n",
|
47 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
48 |
+
" <thead>\n",
|
49 |
+
" <tr style=\"text-align: right;\">\n",
|
50 |
+
" <th></th>\n",
|
51 |
+
" <th>Type</th>\n",
|
52 |
+
" <th>Sport</th>\n",
|
53 |
+
" <th>Year</th>\n",
|
54 |
+
" <th>Company</th>\n",
|
55 |
+
" <th>Product</th>\n",
|
56 |
+
" <th>Card #</th>\n",
|
57 |
+
" <th>Player Name</th>\n",
|
58 |
+
" <th>Notes</th>\n",
|
59 |
+
" <th>HOF</th>\n",
|
60 |
+
" <th>Grader</th>\n",
|
61 |
+
" <th>Grade</th>\n",
|
62 |
+
" <th>Storage Box</th>\n",
|
63 |
+
" </tr>\n",
|
64 |
+
" </thead>\n",
|
65 |
+
" <tbody>\n",
|
66 |
+
" <tr>\n",
|
67 |
+
" <th>0</th>\n",
|
68 |
+
" <td>Card</td>\n",
|
69 |
+
" <td>Baseball</td>\n",
|
70 |
+
" <td>1949</td>\n",
|
71 |
+
" <td>Leaf</td>\n",
|
72 |
+
" <td>NaN</td>\n",
|
73 |
+
" <td>68</td>\n",
|
74 |
+
" <td>Eddie Miller</td>\n",
|
75 |
+
" <td>SP</td>\n",
|
76 |
+
" <td>NaN</td>\n",
|
77 |
+
" <td>Beckett</td>\n",
|
78 |
+
" <td>3.0</td>\n",
|
79 |
+
" <td>270.0</td>\n",
|
80 |
+
" </tr>\n",
|
81 |
+
" <tr>\n",
|
82 |
+
" <th>1</th>\n",
|
83 |
+
" <td>Card</td>\n",
|
84 |
+
" <td>Baseball</td>\n",
|
85 |
+
" <td>1949</td>\n",
|
86 |
+
" <td>Leaf</td>\n",
|
87 |
+
" <td>NaN</td>\n",
|
88 |
+
" <td>48</td>\n",
|
89 |
+
" <td>Johnny Schmitz</td>\n",
|
90 |
+
" <td>SP</td>\n",
|
91 |
+
" <td>NaN</td>\n",
|
92 |
+
" <td>Beckett</td>\n",
|
93 |
+
" <td>3.0</td>\n",
|
94 |
+
" <td>270.0</td>\n",
|
95 |
+
" </tr>\n",
|
96 |
+
" <tr>\n",
|
97 |
+
" <th>2</th>\n",
|
98 |
+
" <td>Card</td>\n",
|
99 |
+
" <td>Baseball</td>\n",
|
100 |
+
" <td>1961</td>\n",
|
101 |
+
" <td>Topps</td>\n",
|
102 |
+
" <td>NaN</td>\n",
|
103 |
+
" <td>575</td>\n",
|
104 |
+
" <td>Ernie Banks</td>\n",
|
105 |
+
" <td>AS</td>\n",
|
106 |
+
" <td>NaN</td>\n",
|
107 |
+
" <td>Beckett</td>\n",
|
108 |
+
" <td>4.5</td>\n",
|
109 |
+
" <td>269.0</td>\n",
|
110 |
+
" </tr>\n",
|
111 |
+
" <tr>\n",
|
112 |
+
" <th>3</th>\n",
|
113 |
+
" <td>Card</td>\n",
|
114 |
+
" <td>Baseball</td>\n",
|
115 |
+
" <td>1949</td>\n",
|
116 |
+
" <td>Leaf</td>\n",
|
117 |
+
" <td>NaN</td>\n",
|
118 |
+
" <td>129</td>\n",
|
119 |
+
" <td>Kirby Higbe</td>\n",
|
120 |
+
" <td>SP</td>\n",
|
121 |
+
" <td>NaN</td>\n",
|
122 |
+
" <td>Beckett</td>\n",
|
123 |
+
" <td>1.5</td>\n",
|
124 |
+
" <td>270.0</td>\n",
|
125 |
+
" </tr>\n",
|
126 |
+
" <tr>\n",
|
127 |
+
" <th>4</th>\n",
|
128 |
+
" <td>Card</td>\n",
|
129 |
+
" <td>Baseball</td>\n",
|
130 |
+
" <td>1999</td>\n",
|
131 |
+
" <td>Topps</td>\n",
|
132 |
+
" <td>All-Topps Mystery Finest</td>\n",
|
133 |
+
" <td>M3</td>\n",
|
134 |
+
" <td>Mark McGwire</td>\n",
|
135 |
+
" <td>NaN</td>\n",
|
136 |
+
" <td>NaN</td>\n",
|
137 |
+
" <td>Beckett</td>\n",
|
138 |
+
" <td>9.0</td>\n",
|
139 |
+
" <td>270.0</td>\n",
|
140 |
+
" </tr>\n",
|
141 |
+
" </tbody>\n",
|
142 |
+
"</table>\n",
|
143 |
+
"</div>"
|
144 |
+
],
|
145 |
+
"text/plain": [
|
146 |
+
" Type Sport Year Company Product Card # \\\n",
|
147 |
+
"0 Card Baseball 1949 Leaf NaN 68 \n",
|
148 |
+
"1 Card Baseball 1949 Leaf NaN 48 \n",
|
149 |
+
"2 Card Baseball 1961 Topps NaN 575 \n",
|
150 |
+
"3 Card Baseball 1949 Leaf NaN 129 \n",
|
151 |
+
"4 Card Baseball 1999 Topps All-Topps Mystery Finest M3 \n",
|
152 |
+
"\n",
|
153 |
+
" Player Name Notes HOF Grader Grade Storage Box \n",
|
154 |
+
"0 Eddie Miller SP NaN Beckett 3.0 270.0 \n",
|
155 |
+
"1 Johnny Schmitz SP NaN Beckett 3.0 270.0 \n",
|
156 |
+
"2 Ernie Banks AS NaN Beckett 4.5 269.0 \n",
|
157 |
+
"3 Kirby Higbe SP NaN Beckett 1.5 270.0 \n",
|
158 |
+
"4 Mark McGwire NaN NaN Beckett 9.0 270.0 "
|
159 |
+
]
|
160 |
+
},
|
161 |
+
"execution_count": 9,
|
162 |
+
"metadata": {},
|
163 |
+
"output_type": "execute_result"
|
164 |
+
}
|
165 |
+
],
|
166 |
+
"source": [
|
167 |
+
"df.head()"
|
168 |
+
]
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"cell_type": "code",
|
172 |
+
"execution_count": 13,
|
173 |
+
"id": "d37f49f3-8fca-42db-a148-b0d0c37c9c04",
|
174 |
+
"metadata": {},
|
175 |
+
"outputs": [
|
176 |
+
{
|
177 |
+
"data": {
|
178 |
+
"text/html": [
|
179 |
+
"<div>\n",
|
180 |
+
"<style scoped>\n",
|
181 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
182 |
+
" vertical-align: middle;\n",
|
183 |
+
" }\n",
|
184 |
+
"\n",
|
185 |
+
" .dataframe tbody tr th {\n",
|
186 |
+
" vertical-align: top;\n",
|
187 |
+
" }\n",
|
188 |
+
"\n",
|
189 |
+
" .dataframe thead th {\n",
|
190 |
+
" text-align: right;\n",
|
191 |
+
" }\n",
|
192 |
+
"</style>\n",
|
193 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
194 |
+
" <thead>\n",
|
195 |
+
" <tr style=\"text-align: right;\">\n",
|
196 |
+
" <th></th>\n",
|
197 |
+
" <th>Type</th>\n",
|
198 |
+
" <th>Sport</th>\n",
|
199 |
+
" <th>Year</th>\n",
|
200 |
+
" <th>Company</th>\n",
|
201 |
+
" <th>Product</th>\n",
|
202 |
+
" <th>Card #</th>\n",
|
203 |
+
" <th>Player Name</th>\n",
|
204 |
+
" <th>Notes</th>\n",
|
205 |
+
" <th>HOF</th>\n",
|
206 |
+
" <th>Grader</th>\n",
|
207 |
+
" <th>Grade</th>\n",
|
208 |
+
" <th>Storage Box</th>\n",
|
209 |
+
" </tr>\n",
|
210 |
+
" </thead>\n",
|
211 |
+
" <tbody>\n",
|
212 |
+
" <tr>\n",
|
213 |
+
" <th>55</th>\n",
|
214 |
+
" <td>Card</td>\n",
|
215 |
+
" <td>Baseball</td>\n",
|
216 |
+
" <td>1952</td>\n",
|
217 |
+
" <td>Bowman</td>\n",
|
218 |
+
" <td>NaN</td>\n",
|
219 |
+
" <td>11</td>\n",
|
220 |
+
" <td>Ralph Kiner</td>\n",
|
221 |
+
" <td>NaN</td>\n",
|
222 |
+
" <td>Y</td>\n",
|
223 |
+
" <td>Beckett</td>\n",
|
224 |
+
" <td>3.0</td>\n",
|
225 |
+
" <td>271.0</td>\n",
|
226 |
+
" </tr>\n",
|
227 |
+
" <tr>\n",
|
228 |
+
" <th>403</th>\n",
|
229 |
+
" <td>Card</td>\n",
|
230 |
+
" <td>Baseball</td>\n",
|
231 |
+
" <td>1953</td>\n",
|
232 |
+
" <td>Bowman</td>\n",
|
233 |
+
" <td>Color</td>\n",
|
234 |
+
" <td>80</td>\n",
|
235 |
+
" <td>Ralph Kiner</td>\n",
|
236 |
+
" <td>NaN</td>\n",
|
237 |
+
" <td>NaN</td>\n",
|
238 |
+
" <td>NaN</td>\n",
|
239 |
+
" <td>NaN</td>\n",
|
240 |
+
" <td>NaN</td>\n",
|
241 |
+
" </tr>\n",
|
242 |
+
" <tr>\n",
|
243 |
+
" <th>314</th>\n",
|
244 |
+
" <td>Card</td>\n",
|
245 |
+
" <td>Baseball</td>\n",
|
246 |
+
" <td>1949</td>\n",
|
247 |
+
" <td>Leaf</td>\n",
|
248 |
+
" <td>NaN</td>\n",
|
249 |
+
" <td>61</td>\n",
|
250 |
+
" <td>Jake Early</td>\n",
|
251 |
+
" <td>NaN</td>\n",
|
252 |
+
" <td>NaN</td>\n",
|
253 |
+
" <td>NaN</td>\n",
|
254 |
+
" <td>NaN</td>\n",
|
255 |
+
" <td>NaN</td>\n",
|
256 |
+
" </tr>\n",
|
257 |
+
" <tr>\n",
|
258 |
+
" <th>179</th>\n",
|
259 |
+
" <td>Card</td>\n",
|
260 |
+
" <td>Baseball</td>\n",
|
261 |
+
" <td>1985</td>\n",
|
262 |
+
" <td>Topps</td>\n",
|
263 |
+
" <td>NaN</td>\n",
|
264 |
+
" <td>401</td>\n",
|
265 |
+
" <td>Mark McGwire</td>\n",
|
266 |
+
" <td>Rookie</td>\n",
|
267 |
+
" <td>NaN</td>\n",
|
268 |
+
" <td>Sportscard Guaranty</td>\n",
|
269 |
+
" <td>86.0</td>\n",
|
270 |
+
" <td>268.0</td>\n",
|
271 |
+
" </tr>\n",
|
272 |
+
" <tr>\n",
|
273 |
+
" <th>492</th>\n",
|
274 |
+
" <td>Card</td>\n",
|
275 |
+
" <td>Baseball</td>\n",
|
276 |
+
" <td>1952</td>\n",
|
277 |
+
" <td>Bowman</td>\n",
|
278 |
+
" <td>NaN</td>\n",
|
279 |
+
" <td>122</td>\n",
|
280 |
+
" <td>Joe Garagiola</td>\n",
|
281 |
+
" <td>NaN</td>\n",
|
282 |
+
" <td>NaN</td>\n",
|
283 |
+
" <td>NaN</td>\n",
|
284 |
+
" <td>NaN</td>\n",
|
285 |
+
" <td>NaN</td>\n",
|
286 |
+
" </tr>\n",
|
287 |
+
" <tr>\n",
|
288 |
+
" <th>315</th>\n",
|
289 |
+
" <td>Card</td>\n",
|
290 |
+
" <td>Baseball</td>\n",
|
291 |
+
" <td>1948</td>\n",
|
292 |
+
" <td>Leaf</td>\n",
|
293 |
+
" <td>NaN</td>\n",
|
294 |
+
" <td>49</td>\n",
|
295 |
+
" <td>Del Ennis</td>\n",
|
296 |
+
" <td>NaN</td>\n",
|
297 |
+
" <td>NaN</td>\n",
|
298 |
+
" <td>NaN</td>\n",
|
299 |
+
" <td>NaN</td>\n",
|
300 |
+
" <td>NaN</td>\n",
|
301 |
+
" </tr>\n",
|
302 |
+
" <tr>\n",
|
303 |
+
" <th>109</th>\n",
|
304 |
+
" <td>Card</td>\n",
|
305 |
+
" <td>Baseball</td>\n",
|
306 |
+
" <td>1949</td>\n",
|
307 |
+
" <td>Leaf</td>\n",
|
308 |
+
" <td>NaN</td>\n",
|
309 |
+
" <td>62</td>\n",
|
310 |
+
" <td>Eddie Joost</td>\n",
|
311 |
+
" <td>SP</td>\n",
|
312 |
+
" <td>NaN</td>\n",
|
313 |
+
" <td>Beckett</td>\n",
|
314 |
+
" <td>2.5</td>\n",
|
315 |
+
" <td>270.0</td>\n",
|
316 |
+
" </tr>\n",
|
317 |
+
" <tr>\n",
|
318 |
+
" <th>66</th>\n",
|
319 |
+
" <td>Card</td>\n",
|
320 |
+
" <td>Baseball</td>\n",
|
321 |
+
" <td>1949</td>\n",
|
322 |
+
" <td>Leaf</td>\n",
|
323 |
+
" <td>NaN</td>\n",
|
324 |
+
" <td>113</td>\n",
|
325 |
+
" <td>Dutch Leonard</td>\n",
|
326 |
+
" <td>SP</td>\n",
|
327 |
+
" <td>NaN</td>\n",
|
328 |
+
" <td>Beckett</td>\n",
|
329 |
+
" <td>2.5</td>\n",
|
330 |
+
" <td>268.0</td>\n",
|
331 |
+
" </tr>\n",
|
332 |
+
" <tr>\n",
|
333 |
+
" <th>340</th>\n",
|
334 |
+
" <td>Card</td>\n",
|
335 |
+
" <td>Basketball</td>\n",
|
336 |
+
" <td>1994</td>\n",
|
337 |
+
" <td>Competitive Images</td>\n",
|
338 |
+
" <td>NaN</td>\n",
|
339 |
+
" <td>8</td>\n",
|
340 |
+
" <td>Michael Jordan</td>\n",
|
341 |
+
" <td>NaN</td>\n",
|
342 |
+
" <td>NaN</td>\n",
|
343 |
+
" <td>NaN</td>\n",
|
344 |
+
" <td>NaN</td>\n",
|
345 |
+
" <td>NaN</td>\n",
|
346 |
+
" </tr>\n",
|
347 |
+
" <tr>\n",
|
348 |
+
" <th>104</th>\n",
|
349 |
+
" <td>Card</td>\n",
|
350 |
+
" <td>Baseball</td>\n",
|
351 |
+
" <td>1949</td>\n",
|
352 |
+
" <td>Leaf</td>\n",
|
353 |
+
" <td>NaN</td>\n",
|
354 |
+
" <td>36</td>\n",
|
355 |
+
" <td>Al Zarilla</td>\n",
|
356 |
+
" <td>SP</td>\n",
|
357 |
+
" <td>NaN</td>\n",
|
358 |
+
" <td>Beckett</td>\n",
|
359 |
+
" <td>2.5</td>\n",
|
360 |
+
" <td>271.0</td>\n",
|
361 |
+
" </tr>\n",
|
362 |
+
" <tr>\n",
|
363 |
+
" <th>469</th>\n",
|
364 |
+
" <td>Card</td>\n",
|
365 |
+
" <td>Baseball</td>\n",
|
366 |
+
" <td>1974</td>\n",
|
367 |
+
" <td>Topps</td>\n",
|
368 |
+
" <td>NaN</td>\n",
|
369 |
+
" <td>230</td>\n",
|
370 |
+
" <td>Tony Perez</td>\n",
|
371 |
+
" <td>NaN</td>\n",
|
372 |
+
" <td>NaN</td>\n",
|
373 |
+
" <td>NaN</td>\n",
|
374 |
+
" <td>NaN</td>\n",
|
375 |
+
" <td>NaN</td>\n",
|
376 |
+
" </tr>\n",
|
377 |
+
" <tr>\n",
|
378 |
+
" <th>420</th>\n",
|
379 |
+
" <td>Card</td>\n",
|
380 |
+
" <td>Baseball</td>\n",
|
381 |
+
" <td>1951</td>\n",
|
382 |
+
" <td>Bowman</td>\n",
|
383 |
+
" <td>NaN</td>\n",
|
384 |
+
" <td>110</td>\n",
|
385 |
+
" <td>Bobby Brown</td>\n",
|
386 |
+
" <td>NaN</td>\n",
|
387 |
+
" <td>NaN</td>\n",
|
388 |
+
" <td>NaN</td>\n",
|
389 |
+
" <td>NaN</td>\n",
|
390 |
+
" <td>NaN</td>\n",
|
391 |
+
" </tr>\n",
|
392 |
+
" <tr>\n",
|
393 |
+
" <th>302</th>\n",
|
394 |
+
" <td>Card</td>\n",
|
395 |
+
" <td>Baseball</td>\n",
|
396 |
+
" <td>2017</td>\n",
|
397 |
+
" <td>Topps</td>\n",
|
398 |
+
" <td>Now</td>\n",
|
399 |
+
" <td>OS-80</td>\n",
|
400 |
+
" <td>Shohei Ohtani</td>\n",
|
401 |
+
" <td>NaN</td>\n",
|
402 |
+
" <td>NaN</td>\n",
|
403 |
+
" <td>NaN</td>\n",
|
404 |
+
" <td>NaN</td>\n",
|
405 |
+
" <td>NaN</td>\n",
|
406 |
+
" </tr>\n",
|
407 |
+
" <tr>\n",
|
408 |
+
" <th>197</th>\n",
|
409 |
+
" <td>Card</td>\n",
|
410 |
+
" <td>Baseball</td>\n",
|
411 |
+
" <td>1957</td>\n",
|
412 |
+
" <td>Topps</td>\n",
|
413 |
+
" <td>NaN</td>\n",
|
414 |
+
" <td>25</td>\n",
|
415 |
+
" <td>Whitey Ford</td>\n",
|
416 |
+
" <td>NaN</td>\n",
|
417 |
+
" <td>NaN</td>\n",
|
418 |
+
" <td>Sportscard Guaranty</td>\n",
|
419 |
+
" <td>86.0</td>\n",
|
420 |
+
" <td>NaN</td>\n",
|
421 |
+
" </tr>\n",
|
422 |
+
" <tr>\n",
|
423 |
+
" <th>144</th>\n",
|
424 |
+
" <td>Card</td>\n",
|
425 |
+
" <td>Baseball</td>\n",
|
426 |
+
" <td>1954</td>\n",
|
427 |
+
" <td>Dan-Dee</td>\n",
|
428 |
+
" <td>NaN</td>\n",
|
429 |
+
" <td>3</td>\n",
|
430 |
+
" <td>Walker Cooper</td>\n",
|
431 |
+
" <td>NaN</td>\n",
|
432 |
+
" <td>NaN</td>\n",
|
433 |
+
" <td>Beckett</td>\n",
|
434 |
+
" <td>2.0</td>\n",
|
435 |
+
" <td>270.0</td>\n",
|
436 |
+
" </tr>\n",
|
437 |
+
" <tr>\n",
|
438 |
+
" <th>481</th>\n",
|
439 |
+
" <td>Card</td>\n",
|
440 |
+
" <td>Baseball</td>\n",
|
441 |
+
" <td>1952</td>\n",
|
442 |
+
" <td>Bowman</td>\n",
|
443 |
+
" <td>NaN</td>\n",
|
444 |
+
" <td>96</td>\n",
|
445 |
+
" <td>Ralph Branca</td>\n",
|
446 |
+
" <td>NaN</td>\n",
|
447 |
+
" <td>NaN</td>\n",
|
448 |
+
" <td>NaN</td>\n",
|
449 |
+
" <td>NaN</td>\n",
|
450 |
+
" <td>NaN</td>\n",
|
451 |
+
" </tr>\n",
|
452 |
+
" <tr>\n",
|
453 |
+
" <th>194</th>\n",
|
454 |
+
" <td>Card</td>\n",
|
455 |
+
" <td>Baseball</td>\n",
|
456 |
+
" <td>1987</td>\n",
|
457 |
+
" <td>Fleer</td>\n",
|
458 |
+
" <td>Update Glossy</td>\n",
|
459 |
+
" <td>U-68</td>\n",
|
460 |
+
" <td>Greg Maddux</td>\n",
|
461 |
+
" <td>Rookie</td>\n",
|
462 |
+
" <td>NaN</td>\n",
|
463 |
+
" <td>Sportscard Guaranty</td>\n",
|
464 |
+
" <td>96.0</td>\n",
|
465 |
+
" <td>268.0</td>\n",
|
466 |
+
" </tr>\n",
|
467 |
+
" <tr>\n",
|
468 |
+
" <th>123</th>\n",
|
469 |
+
" <td>Card</td>\n",
|
470 |
+
" <td>Baseball</td>\n",
|
471 |
+
" <td>2001</td>\n",
|
472 |
+
" <td>Topps</td>\n",
|
473 |
+
" <td>NaN</td>\n",
|
474 |
+
" <td>726</td>\n",
|
475 |
+
" <td>Ichiro Suzuki</td>\n",
|
476 |
+
" <td>NaN</td>\n",
|
477 |
+
" <td>NaN</td>\n",
|
478 |
+
" <td>Beckett</td>\n",
|
479 |
+
" <td>8.0</td>\n",
|
480 |
+
" <td>267.0</td>\n",
|
481 |
+
" </tr>\n",
|
482 |
+
" <tr>\n",
|
483 |
+
" <th>224</th>\n",
|
484 |
+
" <td>Card</td>\n",
|
485 |
+
" <td>Baseball</td>\n",
|
486 |
+
" <td>1993</td>\n",
|
487 |
+
" <td>Classic</td>\n",
|
488 |
+
" <td>Best</td>\n",
|
489 |
+
" <td>PR1</td>\n",
|
490 |
+
" <td>Derek Jeter</td>\n",
|
491 |
+
" <td>NaN</td>\n",
|
492 |
+
" <td>NaN</td>\n",
|
493 |
+
" <td>CSA</td>\n",
|
494 |
+
" <td>9.0</td>\n",
|
495 |
+
" <td>NaN</td>\n",
|
496 |
+
" </tr>\n",
|
497 |
+
" <tr>\n",
|
498 |
+
" <th>358</th>\n",
|
499 |
+
" <td>Card</td>\n",
|
500 |
+
" <td>Baseball</td>\n",
|
501 |
+
" <td>1952</td>\n",
|
502 |
+
" <td>Topps</td>\n",
|
503 |
+
" <td>NaN</td>\n",
|
504 |
+
" <td>36</td>\n",
|
505 |
+
" <td>Gil Hodges</td>\n",
|
506 |
+
" <td>NaN</td>\n",
|
507 |
+
" <td>NaN</td>\n",
|
508 |
+
" <td>NaN</td>\n",
|
509 |
+
" <td>NaN</td>\n",
|
510 |
+
" <td>NaN</td>\n",
|
511 |
+
" </tr>\n",
|
512 |
+
" </tbody>\n",
|
513 |
+
"</table>\n",
|
514 |
+
"</div>"
|
515 |
+
],
|
516 |
+
"text/plain": [
|
517 |
+
" Type Sport Year Company Product Card # \\\n",
|
518 |
+
"55 Card Baseball 1952 Bowman NaN 11 \n",
|
519 |
+
"403 Card Baseball 1953 Bowman Color 80 \n",
|
520 |
+
"314 Card Baseball 1949 Leaf NaN 61 \n",
|
521 |
+
"179 Card Baseball 1985 Topps NaN 401 \n",
|
522 |
+
"492 Card Baseball 1952 Bowman NaN 122 \n",
|
523 |
+
"315 Card Baseball 1948 Leaf NaN 49 \n",
|
524 |
+
"109 Card Baseball 1949 Leaf NaN 62 \n",
|
525 |
+
"66 Card Baseball 1949 Leaf NaN 113 \n",
|
526 |
+
"340 Card Basketball 1994 Competitive Images NaN 8 \n",
|
527 |
+
"104 Card Baseball 1949 Leaf NaN 36 \n",
|
528 |
+
"469 Card Baseball 1974 Topps NaN 230 \n",
|
529 |
+
"420 Card Baseball 1951 Bowman NaN 110 \n",
|
530 |
+
"302 Card Baseball 2017 Topps Now OS-80 \n",
|
531 |
+
"197 Card Baseball 1957 Topps NaN 25 \n",
|
532 |
+
"144 Card Baseball 1954 Dan-Dee NaN 3 \n",
|
533 |
+
"481 Card Baseball 1952 Bowman NaN 96 \n",
|
534 |
+
"194 Card Baseball 1987 Fleer Update Glossy U-68 \n",
|
535 |
+
"123 Card Baseball 2001 Topps NaN 726 \n",
|
536 |
+
"224 Card Baseball 1993 Classic Best PR1 \n",
|
537 |
+
"358 Card Baseball 1952 Topps NaN 36 \n",
|
538 |
+
"\n",
|
539 |
+
" Player Name Notes HOF Grader Grade Storage Box \n",
|
540 |
+
"55 Ralph Kiner NaN Y Beckett 3.0 271.0 \n",
|
541 |
+
"403 Ralph Kiner NaN NaN NaN NaN NaN \n",
|
542 |
+
"314 Jake Early NaN NaN NaN NaN NaN \n",
|
543 |
+
"179 Mark McGwire Rookie NaN Sportscard Guaranty 86.0 268.0 \n",
|
544 |
+
"492 Joe Garagiola NaN NaN NaN NaN NaN \n",
|
545 |
+
"315 Del Ennis NaN NaN NaN NaN NaN \n",
|
546 |
+
"109 Eddie Joost SP NaN Beckett 2.5 270.0 \n",
|
547 |
+
"66 Dutch Leonard SP NaN Beckett 2.5 268.0 \n",
|
548 |
+
"340 Michael Jordan NaN NaN NaN NaN NaN \n",
|
549 |
+
"104 Al Zarilla SP NaN Beckett 2.5 271.0 \n",
|
550 |
+
"469 Tony Perez NaN NaN NaN NaN NaN \n",
|
551 |
+
"420 Bobby Brown NaN NaN NaN NaN NaN \n",
|
552 |
+
"302 Shohei Ohtani NaN NaN NaN NaN NaN \n",
|
553 |
+
"197 Whitey Ford NaN NaN Sportscard Guaranty 86.0 NaN \n",
|
554 |
+
"144 Walker Cooper NaN NaN Beckett 2.0 270.0 \n",
|
555 |
+
"481 Ralph Branca NaN NaN NaN NaN NaN \n",
|
556 |
+
"194 Greg Maddux Rookie NaN Sportscard Guaranty 96.0 268.0 \n",
|
557 |
+
"123 Ichiro Suzuki NaN NaN Beckett 8.0 267.0 \n",
|
558 |
+
"224 Derek Jeter NaN NaN CSA 9.0 NaN \n",
|
559 |
+
"358 Gil Hodges NaN NaN NaN NaN NaN "
|
560 |
+
]
|
561 |
+
},
|
562 |
+
"execution_count": 13,
|
563 |
+
"metadata": {},
|
564 |
+
"output_type": "execute_result"
|
565 |
+
}
|
566 |
+
],
|
567 |
+
"source": [
|
568 |
+
"sample = df[:500].sample(20)\n",
|
569 |
+
"sample"
|
570 |
+
]
|
571 |
+
},
|
572 |
+
{
|
573 |
+
"cell_type": "code",
|
574 |
+
"execution_count": 15,
|
575 |
+
"id": "795ef99b-abd7-4fe8-b56c-1779ebda8d52",
|
576 |
+
"metadata": {},
|
577 |
+
"outputs": [
|
578 |
+
{
|
579 |
+
"data": {
|
580 |
+
"text/html": [
|
581 |
+
"<div>\n",
|
582 |
+
"<style scoped>\n",
|
583 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
584 |
+
" vertical-align: middle;\n",
|
585 |
+
" }\n",
|
586 |
+
"\n",
|
587 |
+
" .dataframe tbody tr th {\n",
|
588 |
+
" vertical-align: top;\n",
|
589 |
+
" }\n",
|
590 |
+
"\n",
|
591 |
+
" .dataframe thead th {\n",
|
592 |
+
" text-align: right;\n",
|
593 |
+
" }\n",
|
594 |
+
"</style>\n",
|
595 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
596 |
+
" <thead>\n",
|
597 |
+
" <tr style=\"text-align: right;\">\n",
|
598 |
+
" <th></th>\n",
|
599 |
+
" <th>Type</th>\n",
|
600 |
+
" <th>Sport</th>\n",
|
601 |
+
" <th>Year</th>\n",
|
602 |
+
" <th>Company</th>\n",
|
603 |
+
" <th>Product</th>\n",
|
604 |
+
" <th>Card #</th>\n",
|
605 |
+
" <th>Player Name</th>\n",
|
606 |
+
" <th>Notes</th>\n",
|
607 |
+
" <th>HOF</th>\n",
|
608 |
+
" <th>Grader</th>\n",
|
609 |
+
" <th>Grade</th>\n",
|
610 |
+
" <th>Storage Box</th>\n",
|
611 |
+
" </tr>\n",
|
612 |
+
" </thead>\n",
|
613 |
+
" <tbody>\n",
|
614 |
+
" <tr>\n",
|
615 |
+
" <th>179</th>\n",
|
616 |
+
" <td>Card</td>\n",
|
617 |
+
" <td>Baseball</td>\n",
|
618 |
+
" <td>1985</td>\n",
|
619 |
+
" <td>Topps</td>\n",
|
620 |
+
" <td>NaN</td>\n",
|
621 |
+
" <td>401</td>\n",
|
622 |
+
" <td>Mark McGwire</td>\n",
|
623 |
+
" <td>Rookie</td>\n",
|
624 |
+
" <td>NaN</td>\n",
|
625 |
+
" <td>Sportscard Guaranty</td>\n",
|
626 |
+
" <td>86.0</td>\n",
|
627 |
+
" <td>268.0</td>\n",
|
628 |
+
" </tr>\n",
|
629 |
+
" <tr>\n",
|
630 |
+
" <th>492</th>\n",
|
631 |
+
" <td>Card</td>\n",
|
632 |
+
" <td>Baseball</td>\n",
|
633 |
+
" <td>1952</td>\n",
|
634 |
+
" <td>Bowman</td>\n",
|
635 |
+
" <td>NaN</td>\n",
|
636 |
+
" <td>122</td>\n",
|
637 |
+
" <td>Joe Garagiola</td>\n",
|
638 |
+
" <td>NaN</td>\n",
|
639 |
+
" <td>NaN</td>\n",
|
640 |
+
" <td>NaN</td>\n",
|
641 |
+
" <td>NaN</td>\n",
|
642 |
+
" <td>NaN</td>\n",
|
643 |
+
" </tr>\n",
|
644 |
+
" <tr>\n",
|
645 |
+
" <th>315</th>\n",
|
646 |
+
" <td>Card</td>\n",
|
647 |
+
" <td>Baseball</td>\n",
|
648 |
+
" <td>1948</td>\n",
|
649 |
+
" <td>Leaf</td>\n",
|
650 |
+
" <td>NaN</td>\n",
|
651 |
+
" <td>49</td>\n",
|
652 |
+
" <td>Del Ennis</td>\n",
|
653 |
+
" <td>NaN</td>\n",
|
654 |
+
" <td>NaN</td>\n",
|
655 |
+
" <td>NaN</td>\n",
|
656 |
+
" <td>NaN</td>\n",
|
657 |
+
" <td>NaN</td>\n",
|
658 |
+
" </tr>\n",
|
659 |
+
" <tr>\n",
|
660 |
+
" <th>109</th>\n",
|
661 |
+
" <td>Card</td>\n",
|
662 |
+
" <td>Baseball</td>\n",
|
663 |
+
" <td>1949</td>\n",
|
664 |
+
" <td>Leaf</td>\n",
|
665 |
+
" <td>NaN</td>\n",
|
666 |
+
" <td>62</td>\n",
|
667 |
+
" <td>Eddie Joost</td>\n",
|
668 |
+
" <td>SP</td>\n",
|
669 |
+
" <td>NaN</td>\n",
|
670 |
+
" <td>Beckett</td>\n",
|
671 |
+
" <td>2.5</td>\n",
|
672 |
+
" <td>270.0</td>\n",
|
673 |
+
" </tr>\n",
|
674 |
+
" <tr>\n",
|
675 |
+
" <th>66</th>\n",
|
676 |
+
" <td>Card</td>\n",
|
677 |
+
" <td>Baseball</td>\n",
|
678 |
+
" <td>1949</td>\n",
|
679 |
+
" <td>Leaf</td>\n",
|
680 |
+
" <td>NaN</td>\n",
|
681 |
+
" <td>113</td>\n",
|
682 |
+
" <td>Dutch Leonard</td>\n",
|
683 |
+
" <td>SP</td>\n",
|
684 |
+
" <td>NaN</td>\n",
|
685 |
+
" <td>Beckett</td>\n",
|
686 |
+
" <td>2.5</td>\n",
|
687 |
+
" <td>268.0</td>\n",
|
688 |
+
" </tr>\n",
|
689 |
+
" <tr>\n",
|
690 |
+
" <th>340</th>\n",
|
691 |
+
" <td>Card</td>\n",
|
692 |
+
" <td>Basketball</td>\n",
|
693 |
+
" <td>1994</td>\n",
|
694 |
+
" <td>Competitive Images</td>\n",
|
695 |
+
" <td>NaN</td>\n",
|
696 |
+
" <td>8</td>\n",
|
697 |
+
" <td>Michael Jordan</td>\n",
|
698 |
+
" <td>NaN</td>\n",
|
699 |
+
" <td>NaN</td>\n",
|
700 |
+
" <td>NaN</td>\n",
|
701 |
+
" <td>NaN</td>\n",
|
702 |
+
" <td>NaN</td>\n",
|
703 |
+
" </tr>\n",
|
704 |
+
" <tr>\n",
|
705 |
+
" <th>104</th>\n",
|
706 |
+
" <td>Card</td>\n",
|
707 |
+
" <td>Baseball</td>\n",
|
708 |
+
" <td>1949</td>\n",
|
709 |
+
" <td>Leaf</td>\n",
|
710 |
+
" <td>NaN</td>\n",
|
711 |
+
" <td>36</td>\n",
|
712 |
+
" <td>Al Zarilla</td>\n",
|
713 |
+
" <td>SP</td>\n",
|
714 |
+
" <td>NaN</td>\n",
|
715 |
+
" <td>Beckett</td>\n",
|
716 |
+
" <td>2.5</td>\n",
|
717 |
+
" <td>271.0</td>\n",
|
718 |
+
" </tr>\n",
|
719 |
+
" </tbody>\n",
|
720 |
+
"</table>\n",
|
721 |
+
"</div>"
|
722 |
+
],
|
723 |
+
"text/plain": [
|
724 |
+
" Type Sport Year Company Product Card # \\\n",
|
725 |
+
"179 Card Baseball 1985 Topps NaN 401 \n",
|
726 |
+
"492 Card Baseball 1952 Bowman NaN 122 \n",
|
727 |
+
"315 Card Baseball 1948 Leaf NaN 49 \n",
|
728 |
+
"109 Card Baseball 1949 Leaf NaN 62 \n",
|
729 |
+
"66 Card Baseball 1949 Leaf NaN 113 \n",
|
730 |
+
"340 Card Basketball 1994 Competitive Images NaN 8 \n",
|
731 |
+
"104 Card Baseball 1949 Leaf NaN 36 \n",
|
732 |
+
"\n",
|
733 |
+
" Player Name Notes HOF Grader Grade Storage Box \n",
|
734 |
+
"179 Mark McGwire Rookie NaN Sportscard Guaranty 86.0 268.0 \n",
|
735 |
+
"492 Joe Garagiola NaN NaN NaN NaN NaN \n",
|
736 |
+
"315 Del Ennis NaN NaN NaN NaN NaN \n",
|
737 |
+
"109 Eddie Joost SP NaN Beckett 2.5 270.0 \n",
|
738 |
+
"66 Dutch Leonard SP NaN Beckett 2.5 268.0 \n",
|
739 |
+
"340 Michael Jordan NaN NaN NaN NaN NaN \n",
|
740 |
+
"104 Al Zarilla SP NaN Beckett 2.5 271.0 "
|
741 |
+
]
|
742 |
+
},
|
743 |
+
"execution_count": 15,
|
744 |
+
"metadata": {},
|
745 |
+
"output_type": "execute_result"
|
746 |
+
}
|
747 |
+
],
|
748 |
+
"source": [
|
749 |
+
"sample[3:10]"
|
750 |
+
]
|
751 |
+
},
|
752 |
+
{
|
753 |
+
"cell_type": "code",
|
754 |
+
"execution_count": 23,
|
755 |
+
"id": "58a90d8e-0480-4187-a7eb-cd69463c0329",
|
756 |
+
"metadata": {},
|
757 |
+
"outputs": [],
|
758 |
+
"source": [
|
759 |
+
"outfile = \"sample_data/sample_data_1.txt\"\n",
|
760 |
+
"sample[3:13].to_csv(outfile, sep=\"\\t\", index=False, encoding=\"utf-8\")"
|
761 |
+
]
|
762 |
+
},
|
763 |
+
{
|
764 |
+
"cell_type": "code",
|
765 |
+
"execution_count": 21,
|
766 |
+
"id": "31083cda-058b-4aee-b0d5-965e48c4bca7",
|
767 |
+
"metadata": {},
|
768 |
+
"outputs": [
|
769 |
+
{
|
770 |
+
"data": {
|
771 |
+
"text/html": [
|
772 |
+
"<div>\n",
|
773 |
+
"<style scoped>\n",
|
774 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
775 |
+
" vertical-align: middle;\n",
|
776 |
+
" }\n",
|
777 |
+
"\n",
|
778 |
+
" .dataframe tbody tr th {\n",
|
779 |
+
" vertical-align: top;\n",
|
780 |
+
" }\n",
|
781 |
+
"\n",
|
782 |
+
" .dataframe thead th {\n",
|
783 |
+
" text-align: right;\n",
|
784 |
+
" }\n",
|
785 |
+
"</style>\n",
|
786 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
787 |
+
" <thead>\n",
|
788 |
+
" <tr style=\"text-align: right;\">\n",
|
789 |
+
" <th></th>\n",
|
790 |
+
" <th>animal</th>\n",
|
791 |
+
" <th>coat pattern</th>\n",
|
792 |
+
" <th>Quantity</th>\n",
|
793 |
+
" </tr>\n",
|
794 |
+
" </thead>\n",
|
795 |
+
" <tbody>\n",
|
796 |
+
" <tr>\n",
|
797 |
+
" <th>0</th>\n",
|
798 |
+
" <td>Leopard</td>\n",
|
799 |
+
" <td>spots</td>\n",
|
800 |
+
" <td>2</td>\n",
|
801 |
+
" </tr>\n",
|
802 |
+
" <tr>\n",
|
803 |
+
" <th>1</th>\n",
|
804 |
+
" <td>Tiger</td>\n",
|
805 |
+
" <td>stripes</td>\n",
|
806 |
+
" <td>10</td>\n",
|
807 |
+
" </tr>\n",
|
808 |
+
" <tr>\n",
|
809 |
+
" <th>2</th>\n",
|
810 |
+
" <td>Lion</td>\n",
|
811 |
+
" <td>solid</td>\n",
|
812 |
+
" <td>1</td>\n",
|
813 |
+
" </tr>\n",
|
814 |
+
" <tr>\n",
|
815 |
+
" <th>3</th>\n",
|
816 |
+
" <td>Cheetah</td>\n",
|
817 |
+
" <td>spots</td>\n",
|
818 |
+
" <td>1</td>\n",
|
819 |
+
" </tr>\n",
|
820 |
+
" </tbody>\n",
|
821 |
+
"</table>\n",
|
822 |
+
"</div>"
|
823 |
+
],
|
824 |
+
"text/plain": [
|
825 |
+
" animal coat pattern Quantity\n",
|
826 |
+
"0 Leopard spots 2\n",
|
827 |
+
"1 Tiger stripes 10\n",
|
828 |
+
"2 Lion solid 1\n",
|
829 |
+
"3 Cheetah spots 1"
|
830 |
+
]
|
831 |
+
},
|
832 |
+
"execution_count": 21,
|
833 |
+
"metadata": {},
|
834 |
+
"output_type": "execute_result"
|
835 |
+
}
|
836 |
+
],
|
837 |
+
"source": [
|
838 |
+
"df2 = pd.DataFrame([{\"animal\": \"Leopard\", \"coat pattern\": \"spots\", \"Quantity\" : 2},\n",
|
839 |
+
" {\"animal\": \"Tiger\", \"coat pattern\": \"stripes\", \"Quantity\" : 10},\n",
|
840 |
+
" {\"animal\" : \"Lion\", \"coat pattern\" : \"solid\", \"Quantity\" : 1},\n",
|
841 |
+
" {\"animal\" : \"Cheetah\", \"coat pattern\" : \"spots\", \"Quantity\" : 1}])\n",
|
842 |
+
"\n",
|
843 |
+
"df2"
|
844 |
+
]
|
845 |
+
},
|
846 |
+
{
|
847 |
+
"cell_type": "code",
|
848 |
+
"execution_count": 22,
|
849 |
+
"id": "bc9735c0-e12a-4b1f-8cb2-7501d37a4c19",
|
850 |
+
"metadata": {},
|
851 |
+
"outputs": [],
|
852 |
+
"source": [
|
853 |
+
"outfile = \"sample_data/sample_data_2.txt\"\n",
|
854 |
+
"df2.to_csv(outfile, sep=\"\\t\", index=False)"
|
855 |
+
]
|
856 |
+
},
|
857 |
+
{
|
858 |
+
"cell_type": "code",
|
859 |
+
"execution_count": 20,
|
860 |
+
"id": "ed438bbb-03f4-44a9-8f14-9390f3996cae",
|
861 |
+
"metadata": {},
|
862 |
+
"outputs": [
|
863 |
+
{
|
864 |
+
"data": {
|
865 |
+
"text/plain": [
|
866 |
+
"True"
|
867 |
+
]
|
868 |
+
},
|
869 |
+
"execution_count": 20,
|
870 |
+
"metadata": {},
|
871 |
+
"output_type": "execute_result"
|
872 |
+
}
|
873 |
+
],
|
874 |
+
"source": [
|
875 |
+
"\"animal\" in df2"
|
876 |
+
]
|
877 |
+
},
|
878 |
+
{
|
879 |
+
"cell_type": "code",
|
880 |
+
"execution_count": 29,
|
881 |
+
"id": "36d5bb2e-cc1e-4afa-bff9-730832e9a5ae",
|
882 |
+
"metadata": {},
|
883 |
+
"outputs": [
|
884 |
+
{
|
885 |
+
"data": {
|
886 |
+
"text/plain": [
|
887 |
+
"dtype('int64')"
|
888 |
+
]
|
889 |
+
},
|
890 |
+
"execution_count": 29,
|
891 |
+
"metadata": {},
|
892 |
+
"output_type": "execute_result"
|
893 |
+
}
|
894 |
+
],
|
895 |
+
"source": [
|
896 |
+
"df3 = pd.read_csv(\"sample_data/sample_data_1.txt\", sep=\"\\t\", encoding=\"ISO-8859-1\" )\n",
|
897 |
+
"df3.Year.dtype"
|
898 |
+
]
|
899 |
+
},
|
900 |
+
{
|
901 |
+
"cell_type": "code",
|
902 |
+
"execution_count": null,
|
903 |
+
"id": "905c63e9-3d06-4905-ac63-3e66bf94c22e",
|
904 |
+
"metadata": {},
|
905 |
+
"outputs": [],
|
906 |
+
"source": []
|
907 |
+
}
|
908 |
+
],
|
909 |
+
"metadata": {
|
910 |
+
"kernelspec": {
|
911 |
+
"display_name": "Python [conda env:rebalance] *",
|
912 |
+
"language": "python",
|
913 |
+
"name": "conda-env-rebalance-py"
|
914 |
+
},
|
915 |
+
"language_info": {
|
916 |
+
"codemirror_mode": {
|
917 |
+
"name": "ipython",
|
918 |
+
"version": 3
|
919 |
+
},
|
920 |
+
"file_extension": ".py",
|
921 |
+
"mimetype": "text/x-python",
|
922 |
+
"name": "python",
|
923 |
+
"nbconvert_exporter": "python",
|
924 |
+
"pygments_lexer": "ipython3",
|
925 |
+
"version": "3.8.13"
|
926 |
+
}
|
927 |
+
},
|
928 |
+
"nbformat": 4,
|
929 |
+
"nbformat_minor": 5
|
930 |
+
}
|
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
pandas
|
sample_data/sample_data_1.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Type Sport Year Company Product Card # Player Name Notes HOF Grader Grade Storage Box
|
2 |
+
Card Baseball 1985 Topps 401 Mark McGwire Rookie Sportscard Guaranty 86.0 268.0
|
3 |
+
Card Baseball 1952 Bowman 122 Joe Garagiola
|
4 |
+
Card Baseball 1948 Leaf 49 Del Ennis
|
5 |
+
Card Baseball 1949 Leaf 62 Eddie Joost SP Beckett 2.5 270.0
|
6 |
+
Card Baseball 1949 Leaf 113 Dutch Leonard SP Beckett 2.5 268.0
|
7 |
+
Card Basketball 1994 Competitive Images 8 Michael Jordan
|
8 |
+
Card Baseball 1949 Leaf 36 Al Zarilla SP Beckett 2.5 271.0
|
9 |
+
Card Baseball 1974 Topps 230 Tony Perez
|
10 |
+
Card Baseball 1951 Bowman 110 Bobby Brown
|
11 |
+
Card Baseball 2017 Topps Now OS-80 Shohei Ohtani
|
sample_data/sample_data_2.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
animal coat pattern Quantity
|
2 |
+
Leopard spots 2
|
3 |
+
Tiger stripes 10
|
4 |
+
Lion solid 1
|
5 |
+
Cheetah spots 1
|