caslabs's picture
Update app.py
775aed7 verified
raw
history blame
1.16 kB
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
import pandas as pd
import xgboost as xgb
from huggingface_hub import hf_hub_download
# Download and load the model from the correct repo
model_path = hf_hub_download(repo_id="caslabs/xgboost-home-price-predictor", filename="xgboost_model.json")
model = xgb.XGBRegressor()
model.load_model(model_path)
# Initialize FastAPI app
app = FastAPI()
# Define the expected input format
class PredictionRequest(BaseModel):
Site_Area_sqft: float
Actual_Age_Years: int
Total_Rooms: int
Bedrooms: int
Bathrooms: float
Gross_Living_Area_sqft: float
Design_Style_Code: int
Condition_Code: int
Energy_Efficient_Code: int
Garage_Carport_Code: int
# Define the /predict route
@app.post("/predict")
async def predict(request: PredictionRequest):
# Convert the input data to a DataFrame
data = pd.DataFrame([request.dict()])
# Make a prediction
try:
predicted_price = model.predict(data)[0]
return {"predicted_price": predicted_price}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))