caslabs's picture
Update app.py
463a210 verified
raw
history blame
871 Bytes
import gradio as gr
import pandas as pd
import xgboost as xgb
from huggingface_hub import hf_hub_download
# Load the model from the Hugging Face Hub
model_path = hf_hub_download(repo_id="caslabs/xgboost-home-price-predictor", filename="xgboost_model.json")
model = xgb.XGBRegressor()
model.load_model(model_path)
# Define the prediction function
def predict_price(features):
# Convert the JSON input to a DataFrame
df = pd.DataFrame([features])
predicted_price = model.predict(df)[0]
return {"predicted_price": predicted_price}
# Set up the Gradio interface
iface = gr.Interface(
fn=predict_price,
inputs=gr.JSON(), # Accept JSON input
outputs=gr.JSON(), # Return JSON output
title="Home Price Prediction API",
description="Predict home price based on input features"
)
# Launch the interface without 'enable_api'
iface.launch()