Spaces:
Sleeping
Sleeping
import gradio as gr | |
import pandas as pd | |
import xgboost as xgb | |
from huggingface_hub import hf_hub_download | |
# Load the model from the Hugging Face Hub | |
model_path = hf_hub_download(repo_id="caslabs/xgboost-home-price-predictor", filename="xgboost_model.json") | |
model = xgb.XGBRegressor() | |
model.load_model(model_path) | |
# Define the prediction function | |
def predict_price(features): | |
# Convert the JSON input to a DataFrame | |
df = pd.DataFrame([features]) | |
predicted_price = model.predict(df)[0] | |
return {"predicted_price": predicted_price} | |
# Set up the Gradio interface | |
iface = gr.Interface( | |
fn=predict_price, | |
inputs=gr.JSON(), # Accept JSON input | |
outputs=gr.JSON(), # Return JSON output | |
title="Home Price Prediction API", | |
description="Predict home price based on input features" | |
) | |
# Launch the interface without 'enable_api' | |
iface.launch() | |