Update app.py
Browse files
app.py
CHANGED
@@ -1,28 +1,62 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
import xgboost as xgb
|
4 |
from huggingface_hub import hf_hub_download
|
|
|
5 |
|
6 |
-
# Load the model from
|
7 |
model_path = hf_hub_download(repo_id="caslabs/xgboost-home-price-predictor", filename="xgboost_model.json")
|
8 |
model = xgb.XGBRegressor()
|
9 |
model.load_model(model_path)
|
10 |
|
11 |
-
#
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
df = pd.DataFrame([features])
|
15 |
predicted_price = model.predict(df)[0]
|
16 |
return {"predicted_price": predicted_price}
|
17 |
|
18 |
-
# Set up
|
19 |
iface = gr.Interface(
|
20 |
-
fn=
|
21 |
-
inputs=gr.JSON(),
|
22 |
-
outputs=gr.JSON(),
|
23 |
title="Home Price Prediction API",
|
24 |
description="Predict home price based on input features"
|
25 |
)
|
26 |
|
27 |
-
# Launch
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException
|
2 |
+
from pydantic import BaseModel
|
3 |
import gradio as gr
|
4 |
import pandas as pd
|
5 |
import xgboost as xgb
|
6 |
from huggingface_hub import hf_hub_download
|
7 |
+
import uvicorn
|
8 |
|
9 |
+
# Load the model from Hugging Face Hub
|
10 |
model_path = hf_hub_download(repo_id="caslabs/xgboost-home-price-predictor", filename="xgboost_model.json")
|
11 |
model = xgb.XGBRegressor()
|
12 |
model.load_model(model_path)
|
13 |
|
14 |
+
# Initialize FastAPI app
|
15 |
+
app = FastAPI()
|
16 |
+
|
17 |
+
# Define the input data model for FastAPI
|
18 |
+
class PredictionRequest(BaseModel):
|
19 |
+
Site_Area_sqft: float
|
20 |
+
Actual_Age_Years: int
|
21 |
+
Total_Rooms: int
|
22 |
+
Bedrooms: int
|
23 |
+
Bathrooms: float
|
24 |
+
Gross_Living_Area_sqft: float
|
25 |
+
Design_Style_Code: int
|
26 |
+
Condition_Code: int
|
27 |
+
Energy_Efficient_Code: int
|
28 |
+
Garage_Carport_Code: int
|
29 |
+
|
30 |
+
# Define a prediction endpoint in FastAPI
|
31 |
+
@app.post("/predict")
|
32 |
+
async def predict(request: PredictionRequest):
|
33 |
+
data = pd.DataFrame([request.dict()])
|
34 |
+
try:
|
35 |
+
predicted_price = model.predict(data)[0]
|
36 |
+
return {"predicted_price": predicted_price}
|
37 |
+
except Exception as e:
|
38 |
+
raise HTTPException(status_code=500, detail=str(e))
|
39 |
+
|
40 |
+
# Define the Gradio prediction function
|
41 |
+
def gradio_predict_price(features):
|
42 |
df = pd.DataFrame([features])
|
43 |
predicted_price = model.predict(df)[0]
|
44 |
return {"predicted_price": predicted_price}
|
45 |
|
46 |
+
# Set up Gradio interface
|
47 |
iface = gr.Interface(
|
48 |
+
fn=gradio_predict_price,
|
49 |
+
inputs=gr.JSON(),
|
50 |
+
outputs=gr.JSON(),
|
51 |
title="Home Price Prediction API",
|
52 |
description="Predict home price based on input features"
|
53 |
)
|
54 |
|
55 |
+
# Launch Gradio on a separate route
|
56 |
+
@app.on_event("startup")
|
57 |
+
async def startup_event():
|
58 |
+
iface.launch(server_name="0.0.0.0", server_port=7860, share=False)
|
59 |
+
|
60 |
+
# Run FastAPI app if this script is executed
|
61 |
+
if __name__ == "__main__":
|
62 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|