caslabs commited on
Commit
4ecec61
·
verified ·
1 Parent(s): 670df98

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -6
app.py CHANGED
@@ -3,24 +3,25 @@ import pandas as pd
3
  import xgboost as xgb
4
  from huggingface_hub import hf_hub_download
5
 
6
- # Download and load the model
7
- model_path = hf_hub_download(repo_id="caslabs/xgboost-home-price-predictor", filename="xgboost_model.json")
8
  model = xgb.XGBRegressor()
9
  model.load_model(model_path)
10
 
11
  # Define the prediction function
12
  def predict_price(features):
 
13
  df = pd.DataFrame([features])
14
  predicted_price = model.predict(df)[0]
15
  return {"predicted_price": predicted_price}
16
 
17
- # Set up Gradio interface as an API endpoint
18
  iface = gr.Interface(
19
  fn=predict_price,
20
- inputs=gr.JSON(),
21
- outputs=gr.JSON(),
22
  title="Home Price Prediction API",
23
- description="Predict home price based on features"
24
  )
25
 
26
  iface.launch()
 
3
  import xgboost as xgb
4
  from huggingface_hub import hf_hub_download
5
 
6
+ # Load the model from the Hugging Face Hub
7
+ model_path = hf_hub_download(repo_id="caslabs/home-price-predictor-mockup", filename="xgboost_model.json")
8
  model = xgb.XGBRegressor()
9
  model.load_model(model_path)
10
 
11
  # Define the prediction function
12
  def predict_price(features):
13
+ # Convert the JSON input to a DataFrame
14
  df = pd.DataFrame([features])
15
  predicted_price = model.predict(df)[0]
16
  return {"predicted_price": predicted_price}
17
 
18
+ # Set up the Gradio interface
19
  iface = gr.Interface(
20
  fn=predict_price,
21
+ inputs=gr.JSON(), # Accept JSON input
22
+ outputs=gr.JSON(), # Return JSON output
23
  title="Home Price Prediction API",
24
+ description="Predict home price based on input features"
25
  )
26
 
27
  iface.launch()