caslabs commited on
Commit
d8e3db6
·
verified ·
1 Parent(s): 66faf63

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +34 -0
app.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import pandas as pd
3
+ import xgboost as xgb
4
+ from huggingface_hub import hf_hub_download
5
+
6
+ # Download and load the model from the Hugging Face repository
7
+ model_path = hf_hub_download(
8
+ repo_id='caslabs/xgboost-home-price-predictor',
9
+ filename='xgboost_model.json',
10
+ repo_type='model'
11
+ )
12
+
13
+ loaded_model = xgb.XGBRegressor()
14
+ loaded_model.load_model(model_path)
15
+
16
+ # Define the prediction function
17
+ def predict_price(data):
18
+ # Parse the input data
19
+ input_data = pd.DataFrame([data])
20
+
21
+ # Make a prediction
22
+ predicted_price = loaded_model.predict(input_data)[0]
23
+ return {"predicted_price": round(predicted_price, 2)}
24
+
25
+ # Define the API interface with Gradio
26
+ iface = gr.Interface(
27
+ fn=predict_price,
28
+ inputs=gr.JSON(), # Accept JSON input
29
+ outputs=gr.JSON(), # Return JSON output
30
+ title="Home Price Prediction API",
31
+ description="Provide property details in JSON format, and the model will return the predicted adjusted sale price."
32
+ )
33
+
34
+ iface.launch()