Spaces:
Build error
Build error
File size: 14,563 Bytes
f35cc94 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 |
from fastai.basics import *
from ..vocab import *
from ..utils.top_k_top_p import top_k_top_p
from ..utils.midifile import is_empty_midi
from ..music_transformer.transform import *
from ..music_transformer.learner import filter_invalid_indexes
from .model import get_multitask_model
from .dataloader import *
def multitask_model_learner(data:DataBunch, config:dict=None, drop_mult:float=1.,
pretrained_path:PathOrStr=None, **learn_kwargs) -> 'LanguageLearner':
"Create a `Learner` with a language model from `data` and `arch`."
vocab = data.vocab
vocab_size = len(vocab)
if pretrained_path:
state = torch.load(pretrained_path, map_location='cpu')
if config is None: config = state['config']
model = get_multitask_model(vocab_size, config=config, drop_mult=drop_mult, pad_idx=vocab.pad_idx)
metrics = [AverageMultiMetric(partial(m, pad_idx=vocab.pad_idx)) for m in [mask_acc, lm_acc, c2m_acc, m2c_acc]]
loss_func = MultiLoss(ignore_index=data.vocab.pad_idx)
learn = MultitaskLearner(data, model, loss_func=loss_func, metrics=metrics, **learn_kwargs)
if pretrained_path:
get_model(model).load_state_dict(state['model'], strict=False)
if not hasattr(learn, 'opt'): learn.create_opt(defaults.lr, learn.wd)
try: learn.opt.load_state_dict(state['opt'])
except: pass
del state
gc.collect()
return learn
class MultitaskLearner(Learner):
def save(self, file:PathLikeOrBinaryStream=None, with_opt:bool=True, config=None):
"Save model and optimizer state (if `with_opt`) with `file` to `self.model_dir`. `file` can be file-like (file or buffer)"
out_path = super().save(file, return_path=True, with_opt=with_opt)
if config and out_path:
state = torch.load(out_path)
state['config'] = config
torch.save(state, out_path)
del state
gc.collect()
return out_path
def predict_nw(self, item:MusicItem, n_words:int=128,
temperatures:float=(1.0,1.0), min_bars=4,
top_k=30, top_p=0.6):
"Return the `n_words` that come after `text`."
self.model.reset()
new_idx = []
vocab = self.data.vocab
x, pos = item.to_tensor(), item.get_pos_tensor()
last_pos = pos[-1] if len(pos) else 0
y = torch.tensor([0])
start_pos = last_pos
sep_count = 0
bar_len = SAMPLE_FREQ * 4 # assuming 4/4 time
vocab = self.data.vocab
repeat_count = 0
for i in progress_bar(range(n_words), leave=True):
batch = { 'lm': { 'x': x[None], 'pos': pos[None] } }, y
logits = self.pred_batch(batch=batch)['lm'][-1][-1]
prev_idx = new_idx[-1] if len(new_idx) else vocab.pad_idx
# Temperature
# Use first temperatures value if last prediction was duration
temperature = temperatures[0] if vocab.is_duration_or_pad(prev_idx) else temperatures[1]
repeat_penalty = max(0, np.log((repeat_count+1)/4)/5) * temperature
temperature += repeat_penalty
if temperature != 1.: logits = logits / temperature
# Filter
# bar = 16 beats
filter_value = -float('Inf')
if ((last_pos - start_pos) // 16) <= min_bars: logits[vocab.bos_idx] = filter_value
logits = filter_invalid_indexes(logits, prev_idx, vocab, filter_value=filter_value)
logits = top_k_top_p(logits, top_k=top_k, top_p=top_p, filter_value=filter_value)
# Sample
probs = F.softmax(logits, dim=-1)
idx = torch.multinomial(probs, 1).item()
# Update repeat count
num_choices = len(probs.nonzero().view(-1))
if num_choices <= 2: repeat_count += 1
else: repeat_count = repeat_count // 2
if prev_idx==vocab.sep_idx:
duration = idx - vocab.dur_range[0]
last_pos = last_pos + duration
bars_pred = (last_pos - start_pos) // 16
abs_bar = last_pos // 16
# if (bars % 8 == 0) and (bars_pred > min_bars): break
if (i / n_words > 0.80) and (abs_bar % 4 == 0): break
if idx==vocab.bos_idx:
print('Predicted BOS token. Returning prediction...')
break
new_idx.append(idx)
x = x.new_tensor([idx])
pos = pos.new_tensor([last_pos])
pred = vocab.to_music_item(np.array(new_idx))
full = item.append(pred)
return pred, full
def predict_mask(self, masked_item:MusicItem,
temperatures:float=(1.0,1.0),
top_k=20, top_p=0.8):
x = masked_item.to_tensor()
pos = masked_item.get_pos_tensor()
y = torch.tensor([0])
vocab = self.data.vocab
self.model.reset()
mask_idxs = (x == vocab.mask_idx).nonzero().view(-1)
repeat_count = 0
for midx in progress_bar(mask_idxs, leave=True):
prev_idx = x[midx-1]
# Using original positions, otherwise model gets too off track
# pos = torch.tensor(-position_enc(xb[0].cpu().numpy()), device=xb.device)[None]
# Next Word
logits = self.pred_batch(batch=({ 'msk': { 'x': x[None], 'pos': pos[None] } }, y) )['msk'][0][midx]
# Temperature
# Use first temperatures value if last prediction was duration
temperature = temperatures[0] if vocab.is_duration_or_pad(prev_idx) else temperatures[1]
repeat_penalty = max(0, np.log((repeat_count+1)/4)/5) * temperature
temperature += repeat_penalty
if temperature != 1.: logits = logits / temperature
# Filter
filter_value = -float('Inf')
special_idxs = [vocab.bos_idx, vocab.sep_idx, vocab.stoi[EOS]]
logits[special_idxs] = filter_value # Don't allow any special tokens (as we are only removing notes and durations)
logits = filter_invalid_indexes(logits, prev_idx, vocab, filter_value=filter_value)
logits = top_k_top_p(logits, top_k=top_k, top_p=top_p, filter_value=filter_value)
# Sampling
probs = F.softmax(logits, dim=-1)
idx = torch.multinomial(probs, 1).item()
# Update repeat count
num_choices = len(probs.nonzero().view(-1))
if num_choices <= 2: repeat_count += 1
else: repeat_count = repeat_count // 2
x[midx] = idx
return vocab.to_music_item(x.cpu().numpy())
def predict_s2s(self, input_item:MusicItem, target_item:MusicItem, n_words:int=256,
temperatures:float=(1.0,1.0), top_k=30, top_p=0.8,
use_memory=True):
vocab = self.data.vocab
# Input doesn't change. We can reuse the encoder output on each prediction
with torch.no_grad():
inp, inp_pos = input_item.to_tensor(), input_item.get_pos_tensor()
x_enc = self.model.encoder(inp[None], inp_pos[None])
# target
targ = target_item.data.tolist()
targ_pos = target_item.position.tolist()
last_pos = targ_pos[-1]
self.model.reset()
repeat_count = 0
max_pos = input_item.position[-1] + SAMPLE_FREQ * 4 # Only predict until both tracks/parts have the same length
x, pos = inp.new_tensor(targ), inp_pos.new_tensor(targ_pos)
for i in progress_bar(range(n_words), leave=True):
# Predict
with torch.no_grad():
dec = self.model.decoder(x[None], pos[None], x_enc)
logits = self.model.head(dec)[-1, -1]
# Temperature
# Use first temperatures value if last prediction was duration
prev_idx = targ[-1] if len(targ) else vocab.pad_idx
temperature = temperatures[0] if vocab.is_duration_or_pad(prev_idx) else temperatures[1]
repeat_penalty = max(0, np.log((repeat_count+1)/4)/5) * temperature
temperature += repeat_penalty
if temperature != 1.: logits = logits / temperature
# Filter
filter_value = -float('Inf')
logits = filter_invalid_indexes(logits, prev_idx, vocab, filter_value=filter_value)
logits = top_k_top_p(logits, top_k=top_k, top_p=top_p, filter_value=filter_value)
# Sample
probs = F.softmax(logits, dim=-1)
idx = torch.multinomial(probs, 1).item()
# Update repeat count
num_choices = len(probs.nonzero().view(-1))
if num_choices <= 2: repeat_count += 1
else: repeat_count = repeat_count // 2
if idx == vocab.bos_idx | idx == vocab.stoi[EOS]:
print('Predicting BOS/EOS')
break
if prev_idx == vocab.sep_idx:
duration = idx - vocab.dur_range[0]
last_pos = last_pos + duration
if last_pos > max_pos:
print('Predicted past counter-part length. Returning early')
break
targ_pos.append(last_pos)
targ.append(idx)
if use_memory:
# Relying on memory for kv. Only need last prediction index
x, pos = inp.new_tensor([targ[-1]]), inp_pos.new_tensor([targ_pos[-1]])
else:
# Reset memory after each prediction, since we feeding the whole sequence every time
self.model.reset()
x, pos = inp.new_tensor(targ), inp_pos.new_tensor(targ_pos)
return vocab.to_music_item(np.array(targ))
# High level prediction functions from midi file
def nw_predict_from_midi(learn, midi=None, n_words=400,
temperatures=(1.0,1.0), top_k=30, top_p=0.6, seed_len=None, **kwargs):
vocab = learn.data.vocab
seed = MusicItem.from_file(midi, vocab) if not is_empty_midi(midi) else MusicItem.empty(vocab)
if seed_len is not None: seed = seed.trim_to_beat(seed_len)
pred, full = learn.predict_nw(seed, n_words=n_words, temperatures=temperatures, top_k=top_k, top_p=top_p, **kwargs)
return full
def s2s_predict_from_midi(learn, midi=None, n_words=200,
temperatures=(1.0,1.0), top_k=24, top_p=0.7, seed_len=None, pred_melody=True, **kwargs):
multitrack_item = MultitrackItem.from_file(midi, learn.data.vocab)
melody, chords = multitrack_item.melody, multitrack_item.chords
inp, targ = (chords, melody) if pred_melody else (melody, chords)
# if seed_len is passed, cutoff sequence so we can predict the rest
if seed_len is not None: targ = targ.trim_to_beat(seed_len)
targ = targ.remove_eos()
pred = learn.predict_s2s(inp, targ, n_words=n_words, temperatures=temperatures, top_k=top_k, top_p=top_p, **kwargs)
part_order = (pred, inp) if pred_melody else (inp, pred)
return MultitrackItem(*part_order)
def mask_predict_from_midi(learn, midi=None, predict_notes=True,
temperatures=(1.0,1.0), top_k=30, top_p=0.7, section=None, **kwargs):
item = MusicItem.from_file(midi, learn.data.vocab)
masked_item = item.mask_pitch(section) if predict_notes else item.mask_duration(section)
pred = learn.predict_mask(masked_item, temperatures=temperatures, top_k=top_k, top_p=top_p, **kwargs)
return pred
# LOSS AND METRICS
class MultiLoss():
def __init__(self, ignore_index=None):
"Loss mult - Mask, NextWord, Seq2Seq"
self.loss = CrossEntropyFlat(ignore_index=ignore_index)
def __call__(self, inputs:Dict[str,Tensor], targets:Dict[str,Tensor])->Rank0Tensor:
losses = [self.loss(inputs[key], target) for key,target in targets.items()]
return sum(losses)
def acc_ignore_pad(input:Tensor, targ:Tensor, pad_idx)->Rank0Tensor:
if input is None or targ is None: return None
n = targ.shape[0]
input = input.argmax(dim=-1).view(n,-1)
targ = targ.view(n,-1)
mask = targ != pad_idx
return (input[mask]==targ[mask]).float().mean()
def acc_index(inputs, targets, key, pad_idx):
return acc_ignore_pad(inputs.get(key), targets.get(key), pad_idx)
def mask_acc(inputs, targets, pad_idx): return acc_index(inputs, targets, 'msk', pad_idx)
def lm_acc(inputs, targets, pad_idx): return acc_index(inputs, targets, 'lm', pad_idx)
def c2m_acc(inputs, targets, pad_idx): return acc_index(inputs, targets, 'c2m', pad_idx)
def m2c_acc(inputs, targets, pad_idx): return acc_index(inputs, targets, 'm2c', pad_idx)
class AverageMultiMetric(AverageMetric):
"Updated fastai.AverageMetric to support multi task metrics."
def on_batch_end(self, last_output, last_target, **kwargs):
"Update metric computation with `last_output` and `last_target`."
if not is_listy(last_target): last_target=[last_target]
val = self.func(last_output, *last_target)
if val is None: return
self.count += first_el(last_target).size(0)
if self.world:
val = val.clone()
dist.all_reduce(val, op=dist.ReduceOp.SUM)
val /= self.world
self.val += first_el(last_target).size(0) * val.detach().cpu()
def on_epoch_end(self, last_metrics, **kwargs):
"Set the final result in `last_metrics`."
if self.count == 0: return add_metrics(last_metrics, 0)
return add_metrics(last_metrics, self.val/self.count)
# MODEL LOADING
class MTTrainer(LearnerCallback):
"`Callback` that regroups lr adjustment to seq_len, AR and TAR."
def __init__(self, learn:Learner, dataloaders=None, starting_mask_window=1):
super().__init__(learn)
self.count = 1
self.mw_start = starting_mask_window
self.dataloaders = dataloaders
def on_epoch_begin(self, **kwargs):
"Reset the hidden state of the model."
model = get_model(self.learn.model)
model.reset()
model.encoder.mask_steps = max(self.count+self.mw_start, 100)
def on_epoch_end(self, last_metrics, **kwargs):
"Finish the computation and sends the result to the Recorder."
if self.dataloaders is not None:
self.learn.data = self.dataloaders[self.count % len(self.dataloaders)]
self.count += 1
|