File size: 14,563 Bytes
f35cc94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
from fastai.basics import *
from ..vocab import *
from ..utils.top_k_top_p import top_k_top_p
from ..utils.midifile import is_empty_midi
from ..music_transformer.transform import *
from ..music_transformer.learner import filter_invalid_indexes
from .model import get_multitask_model
from .dataloader import *

def multitask_model_learner(data:DataBunch, config:dict=None, drop_mult:float=1., 
                            pretrained_path:PathOrStr=None, **learn_kwargs) -> 'LanguageLearner':
    "Create a `Learner` with a language model from `data` and `arch`."
    vocab = data.vocab
    vocab_size = len(vocab)

    if pretrained_path: 
        state = torch.load(pretrained_path, map_location='cpu')
        if config is None: config = state['config']

    model = get_multitask_model(vocab_size, config=config, drop_mult=drop_mult, pad_idx=vocab.pad_idx)
    metrics = [AverageMultiMetric(partial(m, pad_idx=vocab.pad_idx)) for m in [mask_acc, lm_acc, c2m_acc, m2c_acc]]
    loss_func = MultiLoss(ignore_index=data.vocab.pad_idx)
    learn = MultitaskLearner(data, model, loss_func=loss_func, metrics=metrics, **learn_kwargs)
    
    if pretrained_path: 
        get_model(model).load_state_dict(state['model'], strict=False)
        if not hasattr(learn, 'opt'): learn.create_opt(defaults.lr, learn.wd)
        try:    learn.opt.load_state_dict(state['opt'])
        except: pass
        del state
        gc.collect()
        
    return learn

class MultitaskLearner(Learner):
    def save(self, file:PathLikeOrBinaryStream=None, with_opt:bool=True, config=None):
        "Save model and optimizer state (if `with_opt`) with `file` to `self.model_dir`. `file` can be file-like (file or buffer)"
        out_path = super().save(file, return_path=True, with_opt=with_opt)
        if config and out_path:
            state = torch.load(out_path)
            state['config'] = config
            torch.save(state, out_path)
            del state
            gc.collect()
        return out_path

    def predict_nw(self, item:MusicItem, n_words:int=128,
                     temperatures:float=(1.0,1.0), min_bars=4,
                     top_k=30, top_p=0.6):
        "Return the `n_words` that come after `text`."
        self.model.reset()
        new_idx = []
        vocab = self.data.vocab
        x, pos = item.to_tensor(), item.get_pos_tensor()
        last_pos = pos[-1] if len(pos) else 0
        y = torch.tensor([0])

        start_pos = last_pos

        sep_count = 0
        bar_len = SAMPLE_FREQ * 4 # assuming 4/4 time
        vocab = self.data.vocab

        repeat_count = 0

        for i in progress_bar(range(n_words), leave=True):
            batch = { 'lm': { 'x': x[None], 'pos': pos[None] } }, y
            logits = self.pred_batch(batch=batch)['lm'][-1][-1]

            prev_idx = new_idx[-1] if len(new_idx) else vocab.pad_idx

            # Temperature
            # Use first temperatures value if last prediction was duration
            temperature = temperatures[0] if vocab.is_duration_or_pad(prev_idx) else temperatures[1]
            repeat_penalty = max(0, np.log((repeat_count+1)/4)/5) * temperature
            temperature += repeat_penalty
            if temperature != 1.: logits = logits / temperature
                

            # Filter
            # bar = 16 beats
            filter_value = -float('Inf')
            if ((last_pos - start_pos) // 16) <= min_bars: logits[vocab.bos_idx] = filter_value

            logits = filter_invalid_indexes(logits, prev_idx, vocab, filter_value=filter_value)
            logits = top_k_top_p(logits, top_k=top_k, top_p=top_p, filter_value=filter_value)
            
            # Sample
            probs = F.softmax(logits, dim=-1)
            idx = torch.multinomial(probs, 1).item()

            # Update repeat count
            num_choices = len(probs.nonzero().view(-1))
            if num_choices <= 2: repeat_count += 1
            else: repeat_count = repeat_count // 2

            if prev_idx==vocab.sep_idx: 
                duration = idx - vocab.dur_range[0]
                last_pos = last_pos + duration

                bars_pred = (last_pos - start_pos) // 16
                abs_bar = last_pos // 16
                # if (bars % 8 == 0) and (bars_pred > min_bars): break
                if (i / n_words > 0.80) and (abs_bar % 4 == 0): break


            if idx==vocab.bos_idx: 
                print('Predicted BOS token. Returning prediction...')
                break

            new_idx.append(idx)
            x = x.new_tensor([idx])
            pos = pos.new_tensor([last_pos])

        pred = vocab.to_music_item(np.array(new_idx))
        full = item.append(pred)
        return pred, full

    def predict_mask(self, masked_item:MusicItem,
                    temperatures:float=(1.0,1.0),
                    top_k=20, top_p=0.8):
        x = masked_item.to_tensor()
        pos = masked_item.get_pos_tensor()
        y = torch.tensor([0])
        vocab = self.data.vocab
        self.model.reset()
        mask_idxs = (x == vocab.mask_idx).nonzero().view(-1)

        repeat_count = 0

        for midx in progress_bar(mask_idxs, leave=True):
            prev_idx = x[midx-1]

            # Using original positions, otherwise model gets too off track
            # pos = torch.tensor(-position_enc(xb[0].cpu().numpy()), device=xb.device)[None]
    
            # Next Word
            logits = self.pred_batch(batch=({ 'msk': { 'x': x[None], 'pos': pos[None] } }, y) )['msk'][0][midx]

            # Temperature
            # Use first temperatures value if last prediction was duration
            temperature = temperatures[0] if vocab.is_duration_or_pad(prev_idx) else temperatures[1]
            repeat_penalty = max(0, np.log((repeat_count+1)/4)/5) * temperature
            temperature += repeat_penalty
            if temperature != 1.: logits = logits / temperature

            # Filter
            filter_value = -float('Inf')
            special_idxs = [vocab.bos_idx, vocab.sep_idx, vocab.stoi[EOS]]
            logits[special_idxs] = filter_value # Don't allow any special tokens (as we are only removing notes and durations)
            logits = filter_invalid_indexes(logits, prev_idx, vocab, filter_value=filter_value)
            logits = top_k_top_p(logits, top_k=top_k, top_p=top_p, filter_value=filter_value)

            # Sampling
            probs = F.softmax(logits, dim=-1)
            idx = torch.multinomial(probs, 1).item()

            # Update repeat count
            num_choices = len(probs.nonzero().view(-1))
            if num_choices <= 2: repeat_count += 1
            else: repeat_count = repeat_count // 2

            x[midx] = idx

        return vocab.to_music_item(x.cpu().numpy())

    def predict_s2s(self, input_item:MusicItem, target_item:MusicItem, n_words:int=256,
                        temperatures:float=(1.0,1.0), top_k=30, top_p=0.8,
                        use_memory=True):
        vocab = self.data.vocab
        
        # Input doesn't change. We can reuse the encoder output on each prediction
        with torch.no_grad():
            inp, inp_pos = input_item.to_tensor(), input_item.get_pos_tensor()
            x_enc = self.model.encoder(inp[None], inp_pos[None])
        
        # target
        targ = target_item.data.tolist()
        targ_pos = target_item.position.tolist()
        last_pos = targ_pos[-1]
        self.model.reset()

        repeat_count = 0

        max_pos = input_item.position[-1] + SAMPLE_FREQ * 4 # Only predict until both tracks/parts have the same length
        x, pos = inp.new_tensor(targ), inp_pos.new_tensor(targ_pos)
        
        for i in progress_bar(range(n_words), leave=True):
            # Predict
            with torch.no_grad():
                dec = self.model.decoder(x[None], pos[None], x_enc)
                logits = self.model.head(dec)[-1, -1]

            # Temperature
            # Use first temperatures value if last prediction was duration
            prev_idx = targ[-1] if len(targ) else vocab.pad_idx
            temperature = temperatures[0] if vocab.is_duration_or_pad(prev_idx) else temperatures[1]
            repeat_penalty = max(0, np.log((repeat_count+1)/4)/5) * temperature
            temperature += repeat_penalty
            if temperature != 1.: logits = logits / temperature
                
            # Filter
            filter_value = -float('Inf')
            logits = filter_invalid_indexes(logits, prev_idx, vocab, filter_value=filter_value)
            logits = top_k_top_p(logits, top_k=top_k, top_p=top_p, filter_value=filter_value)

            # Sample
            probs = F.softmax(logits, dim=-1)
            idx = torch.multinomial(probs, 1).item()

            # Update repeat count
            num_choices = len(probs.nonzero().view(-1))
            if num_choices <= 2: repeat_count += 1
            else: repeat_count = repeat_count // 2

            if idx == vocab.bos_idx | idx == vocab.stoi[EOS]: 
                print('Predicting BOS/EOS')
                break

            if prev_idx == vocab.sep_idx: 
                duration = idx - vocab.dur_range[0]
                last_pos = last_pos + duration
                if last_pos > max_pos:
                    print('Predicted past counter-part length. Returning early')
                    break

            targ_pos.append(last_pos)
            targ.append(idx)
            
            if use_memory:
                # Relying on memory for kv. Only need last prediction index
                x, pos = inp.new_tensor([targ[-1]]), inp_pos.new_tensor([targ_pos[-1]])
            else:
                # Reset memory after each prediction, since we feeding the whole sequence every time
                self.model.reset()
                x, pos = inp.new_tensor(targ), inp_pos.new_tensor(targ_pos)

        return vocab.to_music_item(np.array(targ))
    
# High level prediction functions from midi file
def nw_predict_from_midi(learn, midi=None, n_words=400, 
                      temperatures=(1.0,1.0), top_k=30, top_p=0.6, seed_len=None, **kwargs):
    vocab = learn.data.vocab
    seed = MusicItem.from_file(midi, vocab) if not is_empty_midi(midi) else MusicItem.empty(vocab)
    if seed_len is not None: seed = seed.trim_to_beat(seed_len)
        
    pred, full = learn.predict_nw(seed, n_words=n_words, temperatures=temperatures, top_k=top_k, top_p=top_p, **kwargs)
    return full

def s2s_predict_from_midi(learn, midi=None, n_words=200, 
                      temperatures=(1.0,1.0), top_k=24, top_p=0.7, seed_len=None, pred_melody=True, **kwargs):
    multitrack_item = MultitrackItem.from_file(midi, learn.data.vocab)
    melody, chords = multitrack_item.melody, multitrack_item.chords
    inp, targ = (chords, melody) if pred_melody else (melody, chords)
    
    # if seed_len is passed, cutoff sequence so we can predict the rest
    if seed_len is not None: targ = targ.trim_to_beat(seed_len)
    targ = targ.remove_eos()
        
    pred = learn.predict_s2s(inp, targ, n_words=n_words, temperatures=temperatures, top_k=top_k, top_p=top_p, **kwargs)
    
    part_order = (pred, inp) if pred_melody else (inp, pred)
    return MultitrackItem(*part_order)

def mask_predict_from_midi(learn, midi=None, predict_notes=True,
                           temperatures=(1.0,1.0), top_k=30, top_p=0.7, section=None, **kwargs):
    item = MusicItem.from_file(midi, learn.data.vocab)
    masked_item = item.mask_pitch(section) if predict_notes else item.mask_duration(section)
    pred = learn.predict_mask(masked_item, temperatures=temperatures, top_k=top_k, top_p=top_p, **kwargs)
    return pred

# LOSS AND METRICS

class MultiLoss():
    def __init__(self, ignore_index=None):
        "Loss mult - Mask, NextWord, Seq2Seq"
        self.loss = CrossEntropyFlat(ignore_index=ignore_index)
        
    def __call__(self, inputs:Dict[str,Tensor], targets:Dict[str,Tensor])->Rank0Tensor:
        losses = [self.loss(inputs[key], target) for key,target in targets.items()]
        return sum(losses)
    
def acc_ignore_pad(input:Tensor, targ:Tensor, pad_idx)->Rank0Tensor:
    if input is None or targ is None: return None
    n = targ.shape[0]
    input = input.argmax(dim=-1).view(n,-1)
    targ = targ.view(n,-1)
    mask = targ != pad_idx
    return (input[mask]==targ[mask]).float().mean()

def acc_index(inputs, targets, key, pad_idx):
    return acc_ignore_pad(inputs.get(key), targets.get(key), pad_idx)
    
def mask_acc(inputs, targets, pad_idx): return acc_index(inputs, targets, 'msk', pad_idx)
def lm_acc(inputs, targets, pad_idx): return acc_index(inputs, targets, 'lm', pad_idx)
def c2m_acc(inputs, targets, pad_idx): return acc_index(inputs, targets, 'c2m', pad_idx)
def m2c_acc(inputs, targets, pad_idx): return acc_index(inputs, targets, 'm2c', pad_idx)


class AverageMultiMetric(AverageMetric):
    "Updated fastai.AverageMetric to support multi task metrics."
    def on_batch_end(self, last_output, last_target, **kwargs):
        "Update metric computation with `last_output` and `last_target`."
        if not is_listy(last_target): last_target=[last_target]
        val = self.func(last_output, *last_target)
        if val is None: return
        self.count += first_el(last_target).size(0)
        if self.world:
            val = val.clone()
            dist.all_reduce(val, op=dist.ReduceOp.SUM)
            val /= self.world
        self.val += first_el(last_target).size(0) * val.detach().cpu()

    def on_epoch_end(self, last_metrics, **kwargs):
        "Set the final result in `last_metrics`."
        if self.count == 0: return add_metrics(last_metrics, 0)
        return add_metrics(last_metrics, self.val/self.count)
    

# MODEL LOADING
class MTTrainer(LearnerCallback):
    "`Callback` that regroups lr adjustment to seq_len, AR and TAR."
    def __init__(self, learn:Learner, dataloaders=None, starting_mask_window=1):
        super().__init__(learn)
        self.count = 1
        self.mw_start = starting_mask_window
        self.dataloaders = dataloaders

    def on_epoch_begin(self, **kwargs):
        "Reset the hidden state of the model."
        model = get_model(self.learn.model)
        model.reset()
        model.encoder.mask_steps = max(self.count+self.mw_start, 100)
        
    def on_epoch_end(self, last_metrics, **kwargs):
        "Finish the computation and sends the result to the Recorder."
        if self.dataloaders is not None: 
            self.learn.data = self.dataloaders[self.count % len(self.dataloaders)]
        self.count += 1